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 A B S T R A C T

The advent of advanced MRI techniques has opened up promising avenues for exploring the intricacies of 
brain neurophysiology, including the network of neural connections. A more comprehensive understanding 
of this network provides invaluable insights into the human brain’s underlying structural architecture and 
dynamic functionalities. Consequently, determining the location of the neural fibers, known as tractography, 
has emerged as a subject of significant interest to both basic scientific research and practical domains, such as 
preoperative planning. This work presents a novel tractography method, HyTract, constructed using artificial 
neural networks and a path search algorithm. Our findings demonstrate that this method can accurately identify 
the location of nerve fibers in close proximity to the surgical field. Compared with well established methods, 
tracts computed with HyTract show Mean Euclidean Distance of 9 or lower, indicating a good accuracy in tract 
reconstruction. Furthermore, its architecture ensures the explainability of the obtained tracts and facilitates 
adaptation to new tasks.
1. Introduction

Tractography is an important area of neurobiology. The utiliza-
tion of non-invasive medical imaging techniques, such as Magnetic 
Resonance Imaging (MRI), allows the delineation of an intricate tis-
sue organization, including that of the brain (Pooley, 2005). This 
encompasses the topology of the neural tracts, which are bundles of 
axons connecting neurons to form sophisticated neural networks, thus 
facilitating the high-level functioning of the brain.

The brain’s anatomy can be investigated via T1 and T2-weighted 
MRI sequences. However, these imaging techniques only allow visual-
ization of a limited set of features, such as gray and white matter or 
some pathological states. Other MRI modalities can depict additional 
features, e.g., allowing the identification of myocardial fibrosis from 3D 
cardiac MRI (CMR) (Mehrnia et al., 2024), visualization of functional 
cortex areas (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; 
Singleton, 2009) with functional MRI (fMRI), or the projection of all 
neural connections within the brain with Diffusion-weighted imaging 
(DWI) (Hagmann et al., 2006). In particular, the Diffusion Tensor 
Imaging (DTI) model, as described in Basser, Mattiello, and LeBihan 
(1994), is a widely used clinical setup.

By employing a diverse array of techniques to examine diffusion 
signal, it is possible to ascertain the direction of water diffusion within 
each voxel representing the brain volume in three-dimensional space. 
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Given the anatomy of neural cells, this reflects the organization of 
axons. Bundles of these structures constitute a neural tract, which is 
defined as a structural connection between brain regions that provides 
a means for electrical signal transduction. The totality of such connec-
tions within the brain is referred to as a tractogram. It is comprised of a 
set of strands in three-dimensional space, defined as streamlines, which 
represent bundles of axons.

The information provided by these MRI modalities and their inter-
pretation models helps to build a comprehensive view of the structural 
and functional connections between different areas of the brain. In-
vestigating these is of interest to scientists engaged in basic research, 
as it allows them to study networks responsible for various aspects of 
our lives, including movement of limbs, cognition, memory formation, 
and many others. At the same time, such neural tract reconstruction 
is of practical use. One example is preoperative planning prior to the 
neurosurgeries involving tumor mass resection.

Although such surgeries are life-saving for many gliomas (Przy-
bylowski, Hervey-Jumper, & Sanai, 2021; Yousefi et al., 2022), they 
are invasive, particularly when the tumor infiltrates significant cortical 
regions. Damaging these during an intervention can impair the patient’s 
motor or cognitive functions (Chaichana et al., 2014; Sanai, Polley, 
McDermott, Parsa, & Berger, 2011). In addition, it is essential to keep 
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their inferent and afferent connections unimpaired, as damage to such 
can have similar effects as damaging cortex regions themselves. To 
partially address this issue, resection can be performed in multiple 
surgeries. Only a portion of the tumor mass is removed during the 
initial surgery to preserve critical structures. Due to the brain’s plastic-
ity, the remainder can be removed in subsequent attempts. It has been 
demonstrated that these regions can shift slightly on the brain’s cortex 
over time, allowing surgeons to remove more infiltrated tissue (Duffau, 
2008).

One of the most crucial aspects of this perspective is the precise 
localization of white matter fibers. Numerous tractography methods 
have been developed to achieve this objective, yet they provide a 
varying probability level. Moreover, the input of a trained radiology 
specialist is indispensable. Based on anatomical knowledge and exper-
tise, such an expert can assess the topology of nerve fibers with greater 
assurance than using a single method alone. In addition to the concerns 
above regarding precision, these methods typically necessitate multiple 
preprocessing and fine-tuning steps, rendering them inaccessible to 
neurosurgeons.

An accurate comprehension of the patient’s brain connectivity is of 
paramount importance when planning and performing neurosurgery. 
To enhance tractography accessibility for physicians specializing in ar-
eas other than radiology, a hybrid model integrating an artificial neural 
network and a path search algorithm has been proposed. This model 
is capable of accurately locating nerve fibers with high probability 
using DWI MRI data. By leveraging the artificial neural network for 
DWI MRI data analysis, the number of preprocessing steps required is 
reduced. With the successful implementation of this model, the system 
will be able to project the location of critical cortical regions based 
on functional MRI data and adjacent neural connections based on the 
tractography results, thus facilitating the planning and execution of the 
surgical intervention.

The main contributions of this work are summarized as follows.

1. We propose a novel approach to preparing a tractography train-
ing dataset through the computation of consensus tractograms. 
These are computed from several tractograms prepared with var-
ious methods for the same set of starting points. The consensus 
tractogram contains only streamlines (fibers, tracts) confirmed 
by all the methods employed. The confirmation is given by 
measuring pairwise similarity between fibers computed with 
different methods.

2. In order to compute a consensus tractogram, it is necessary 
to employ a measure that can be used to compare two trac-
tograms. Such measures are available for abstract graphs derived 
from tractography (Bukhari et al., 2022; Fornito, Zalesky, & 
Breakspear, 2013), but not for comparing individual stream-
lines themselves. In this work, we propose to use the mean 
Euclidean distance between streamline key points as a measure 
of similarity.

3. To compute the topology of neural tracts, we assemble a hybrid 
method consisting of a custom lightweight neural network and 
a heuristic variant of the path search algorithm. The neural net-
work is employed to analyze the diffusion signal and construct 
a weighted graph of possible structural connections within the 
brain. A heuristic A* algorithm is implemented to construct a 
tractogram based on this graph. The method does not necessitate 
meticulous data preprocessing and enables the visualization of 
the graph that serves as the foundation for the determined fibers. 
Given its hybrid nature, we name the method HyTract for Hybrid 
Tractography.

The remaining of the paper is organized as follows. Section 2 
discusses related works divided into formal signal analysis methods 
and machine learning approaches. The research problem is presented 
in Section 3, which is followed by a detailed description of our Hy-
Tract method in Section 4. Section 5 introduces a novel concept of 
2 
a consensus tractogram and explains in detail how such tractograms 
were prepared for training HyTract ANN. Implementation and train-
ing of the neural network are described in Section 6. This section 
presents experiments designed to choose the best architecture and 
training parameters. Experimental results with tract reconstruction and 
comparison with other available methods are provided in Section 7. 
The paper is concluded with a discussion in Section 8.

2. Related works

Computer algorithms are widely used for medical data analysis, in-
cluding medical imaging. Many algorithms have been designed for EEG 
signal processing (Luján, Jimeno, Mateo Sotos, Ricarte, & Borja, 2021), 
or even the generation of a simulated EEG signal to ease the develop-
ment and testing of new algorithms or hypotheses (Yektaeian Vaziri, 
Makkiabadi, & Samadzadehaghdam, 2023). Convolutional Neural Net-
works (CNN), which have been applied to various image processing 
problems (Adnan & Abdulbaqi, 2022; Agnihotri, Saraf, & Bapnad, 2019; 
Seydi et al., 2024), play a crucial role in radiology, easing the work 
of radiologists (Al-Yasriy, Al-Husieny, Mohsen, Khalil, & Hassan, 2020; 
Che, Brown, Foran, Nosher, & Hacihaliloglu, 2021; Milletari et al., 
2017). Even low-resolution images are not an obstacle, as they proved 
to work well in such cases (Ganj, Ebadpour, Darvish, & Bahador, 2023).

Various computer algorithms have also been used to analyze DWI 
imaging. Basser, an inventor of DTI imaging, observed that a trajectory 
of the tract is parallel to the eigenvector associated with the largest 
eigenvalue of the local diffusion tensor (Basser, 1998; Basser et al., 
1994). This observation allowed for the first visualization of the tract. 
Lazar et al. (2003) employed not only the eigenvector of the largest 
eigenvalue but also the information carried by the entire diffusion 
tensor. This algorithm, designated TEND, employs the tensor deflection 
technique. It utilizes a stopping criterion that blocks tract expansion 
when fractional anisotropy drops below a specified value or when the 
direction of the trajectory changes by more than 45◦. Descoteaux et al. 
proposed in their study (Descoteaux, Deriche, Knösche, & Anwander, 
2009) to apply sharpening deconvolution transform (SDT) of the diffu-
sion orientation distribution function (ODF) from Q-ball imaging (Tuch, 
2004) to obtain the fiber ODF (fODF). The transform revealed new 
insights into the relationship between the High Angular Resolution 
Diffusion Imaging (HARDI) signal, diffusion ODF, and the fODF. The 
sparsity of the fODF and the discrepancy between the Q-ball and the 
actual diffusion direction necessitate the utilization of a sharpening 
operation.

MRtrix3 (Tournier et al., 2019) is a freely available collection of 
methods for diffusion data processing and visualization. It implements 
global tractography using a multi-tissue spherical convolution model, 
introduced by Christiaens et al. (2015), extending the method proposed 
by Reisert et al. (2011) to be used with multi-shell response func-
tions. Additionally, it enables the utilization of constrained spherical 
deconvolution, as described in the work of Tournier, Calamante, and 
Connelly (2007), which permits the estimation of the fODF. MRtrix 
incorporates algorithms that employ the fODF function to compute both 
deterministic and probabilistic tractograms, as detailed in Tournier, 
Calamante, and Connelly (2012).

Similarly to MRtrix3, DIPY (Garyfallidis et al., 2014) provides 
Python developers with a plethora of algorithms for tractography. This 
library contains implementations of signal interpretation methods, such 
as Constant Solid Angle (CSA) or Constrained Spherical Deconvolution 
(CSD). The signal interpretations generated by these models can be 
explored to compute tracts with many algorithms available, including 
EuDX (Garyfallidis, 2012), Closest Peak Direction Getter (CPDG), or 
Deterministic Maximum Direction Getter (DMDG) (Garyfallidis et al., 
2014). Furthermore, it provides numerous methods for conducting 
preprocessing and postprocessing steps. With the use of the FURY pack-
age (Garyfallidis et al., 2021), it also allows to visualize tractograms 
interactively.
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Given that such neural tracts can be conceptualized as a path in the 
graph representing all anatomical connections within the brain’s white 
matter, a group of researchers decided to use path search algorithms for 
tracking by applying some modifications to the Djikstra’s algorithm (Di-
jkstra, 1959). Andrew Zalesky proposed a method for tracking neural 
fibers by identifying the shortest path in a weighted digraph, as de-
scribed in Zalesky (2008). In this approach, a single voxel is represented 
as a vertex with edges for all surrounding neighboring voxels. The 
weights of the edges are computed using a Bayesian framework, reflect-
ing the alignment with fiber trajectories in the vicinity. Sotiropoulos, 
Bai, Morgan, Constantinescu, and Tench (2010) proposed a similar 
approach that demonstrated good accuracy for tracking crossing fibers. 
In such areas, voxels contain multiple fiber orientations, which presents 
a challenge for propagating the current trajectory in a direction that 
aligns with the underlying anatomical truth. The method proposed by 
the authors employs ODFs derived from Q-ball imaging (Tuch, 2004) 
and considers multiple fiber populations occurring within a single 
voxel (if partial volume exists). The image is treated as a multigraph, 
enabling the distribution of connectivities in a weighted manner, with 
the most probable tract obtaining the highest weight. Such methods 
could be enhanced with a novel cost definition for the graph edge 
proposed in Aronis, Delibasis, Fanariotis, and Maglogiannis (2016). It 
acknowledges a tract curvature and its alignment with the diffusion 
vector field by considering three terms calculated from the vector field. 
Minimizing these favors the smoothness of the calculated tracts and 
ensures that the transition between the current node and the candidate 
nodes is as parallel as possible with the diffusion eigenvectors.

The utilization of machine learning techniques offers a distinct 
advantage over classical mathematical models. This approach enables 
the estimation of local tissue propensities directly from raw diffusion 
data, thus facilitating neural fiber tracking without the need to use 
models for obtaining ODF or similar functions of the tensor field. The 
initial method of this nature was proposed by Neher et al. in Neher, 
Côté, Houde, Descoteaux, and Maier-Hein (2017) and Neher, Götz, 
Norajitra, Weber, and Maier-Hein (2015). This algorithm builds stream-
lines in a stepwise fashion, with a random forest classifier assigning 
probabilities to each of the directions available at a given point, along 
with the probability for the fiber termination. Tracking is terminated 
when the termination probability exceeds the cumulative sum of other 
probabilities.

Poulin et al. in Poulin et al. (2017) used classical feedforward and 
recurrent neural networks. The feedforward network outputs a set of 
three-dimensional vectors for each point in the diffusion data, which 
is analogous to the ODF function described above. The recurrent net-
work, on the other hand, considers information observed in the voxels 
preceding the current one in relation to the entire fiber orientation. An 
extension of this approach was published in Poulin, Rheault, St-Onge, 
Jodoin, and Descoteaux (2018), where the recurrent network is used 
in a bundle-wise manner. This resulted in improved tracking efficacy, 
a higher number of valid streamlines, and better volume coverage 
compared to other methods.

Another method, named DeepTract, was proposed by Benou et al. 
in Benou and Riklin-Raviv (2018). It employs recurrent neural networks 
to estimate the local fiber orientation as a discrete probability density 
function. This allows us to sample the direction for fiber extension from 
a given point. The classification task in this method is similar to that 
of a random forest classifier proposed by Neher et al.

3. Problem formulation

The objective of this study is to develop a method for computing 
a tractogram based on the data available from the diffusion-weighted 
Imaging (DWI) experiment. A tractogram 𝑇  is a set of streamlines, 
𝑇 = (𝑆1, 𝑆2,… , 𝑆𝑛), representing axonal bundles that constitute the 
structural connections within the brain. A streamline is a sequence of 
consecutively connected points 𝑆 𝑖 = (𝑠𝑖 , 𝑠𝑖 ,… , 𝑠𝑖 ), where 𝑘  is the 
1 2 𝑘𝑖 𝑖

3 
length of a streamline, 𝑠𝑖𝑗 = [𝑥𝑖𝑗 , 𝑦
𝑖
𝑗 , 𝑧

𝑖
𝑗 ], 𝑖 = 1,… , 𝑛, and 𝑠𝑖𝑗 is the center 

of the 𝑗th voxel, where 𝑗 = 1,… , 𝑘𝑖.
The first challenge to be addressed is the interpretation of the 

DWI data. DWI is an MRI technique where the whole brain volume 
is recorded with varying magnetic field gradients. A gradient describes 
the decay of the magnetic field strength along a given direction and, 
as a consequence, allows the measurement of the strength of the water 
diffusion along this axis. The DWI data comprise two parts. The first is 
the gradient table 𝐺 ∈ R3×𝐿 describing the non-homogeneous magnetic 
field and its strength utilized in the data acquisition in 𝐿 consecutive 
frames. The second part is the registered DWI data for the whole 
brain volume, i.e., 𝛺 ∈ R𝑑𝑥×𝑑𝑦×𝑑𝑧×𝐿, where 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 denote the 
dimensions of the recorded brain volume. The recorded signal does not 
directly contain information about the arrangement of axonal bundles 
(neural tracts). A dedicated algorithm has to be applied to compute 
the main water diffusion direction for each voxel, which, based on 
anatomical knowledge, translates into the location and orientation of 
axonal bundles (structural connections) within the white matter.

The second challenge is to utilize this information to compute neural 
tracts. This process is referred to as tracking and is typically conducted 
iteratively. Tracking commences with the establishment of a set of seed 
points, which are presumed to be the origin of neural fibers. Given 
the tissue organization within the brain, these are typically situated 
at the interface between the gray and white matter. Neural tracts, 
represented as streamlines in three-dimensional space, are extended 
in a stepwise manner based on the underlying interpretation of the 
diffusion-weighted imaging (DWI) signal until the stopping criterion is 
met.

Despite the advantages of existing tractography methods, they have 
certain limitations. Formal methods use termination thresholds related 
to the tissue properties derived from the underlying model for diffusion 
signal interpretation. Consequently, they are prone to premature termi-
nation when faced with regions of low anisotropy. Many probabilistic 
methods have a high rate of false positives due to data inadequacies. 
Some of these are addressed by machine learning techniques, where an 
artificial neural network can learn to handle some of the data defects. 
However, these architectures are typically immense, which makes them 
challenging to train. Moreover, their results are finished streamlines, 
with no information allowing for the reasoning behind elucidating 
them to be understood. This is a significant disadvantage in medical 
applications, where explainability is critical. It would be desirable for 
neurosurgical planning to either compute tracts with multiple methods 
or to invest more effort in time-consuming data preprocessing to limit 
the number of false positives, which can limit the area to conduct 
surgery. Therefore, a method that addresses these problems is required.

4. Overview of the HyTract method

This work introduces a novel hybrid approach to tractography, 
which combines signal processing with an artificial neural network 
(ANN) and a path search with a heuristic A* algorithm. A schematic 
view of this idea is presented in Fig.  1.

Tracking starts with a seed point given by the user and consists of 
three phases:

1. Initialization. DWI data is processed in small cuboid chunks of 
the measured brain volume 𝐵𝛩×𝛩×𝛩×𝐿, where 𝐵 ∈ 𝛺, 𝛩 ∈ N
is an odd value, 𝛩 ≥ 5, 𝛩 ≤ 𝑚𝑖𝑛(𝑑𝑥, 𝑑𝑦, 𝑑𝑧), and [𝑑𝑥, 𝑑𝑦, 𝑑𝑧]
are the dimensions of the whole recorded brain volume. This 
cuboid chunk is picked from the DWI volume with the seed point 
positioned at the central voxel.

2. ANN processing. The artificial neural network model processes 
DWI data (the input tensor 𝐵 and the gradient table 𝐺) and 
outputs a tensor 𝑂 ∈ R𝛩×𝛩×𝛩 of probabilities 𝑝𝑖𝑗 , describing 
how likely it is, that a 𝑗th voxel belongs to the streamline 𝑆𝑖. This 
way, ANN analyzes only the immediate vicinity of the streamline 
being elongated.
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Fig. 1. The outline of the HyTract method.
3. Streamline elongation. A streamline is elongated from the central 
voxel to border targets in a cuboid chunk 𝐵 using the heuristic 
A* algorithm, where voxels center are the graph nodes and edge 
costs are 1 − 𝑝𝑖𝑗 , 𝑖 = 1,… , 𝑛, and 𝑗 = 1,… , 𝑘. A border target is 
a voxel of the cuboid chunk 𝐵, for which the probability 𝑝 ≥ 𝜏, 
where 𝜏 is the threshold value determined by the user. Upon 
reaching the border, a designated border voxel is selected as the 
central voxel for the subsequent cube.

Utilization of small cuboid chunks at the time allows us to keep 
a small number of neurons in the ANN model. Moreover, for local 
tractography (e.g., near the surgical field), does not require to analyze 
the whole recorded brain volume. The tractogram is generated upon 
completion of the tracking process for all requested seed points. The 
following sections provide a more detailed description of the designed 
ANN models and the implementation of the heuristic A* algorithm.

4.1. HyTract ANN

We approached the designing of a neural network model with 
progressive refinement. We aimed to start with a simple shallow ar-
chitecture to gradually increase complexity till we reach the optimal 
balance between accuracy and efficiency. Such an approach is par-
ticularly important for medical applications due to the high stakes 
of diagnostic accuracy, the complexity of medical data, and limited 
computational resources. Moreover, employing simple models that do 
not require significant computational power is essential to create sus-
tainable AI with a smaller carbon footprint. As a result of this effort, 
a number of neural network architectures were crafted to generate 
input for a path search algorithm. The architecture that yielded the 
most promising outcomes, illustrated in Fig.  2, establishes a benchmark 
for reference. Divergent models vary in their approaches to processing 
input data, as depicted in the array of architectures showcased in Fig. 
3. All configurations are capable of handling a cube sample with a side 
length of 𝛩, where 𝛩 is an odd number and 𝛩 ≥ 5. For clarity, all 
figures reference the scenario where 𝛩 = 5, chosen as the initial test 
cube size. In our analysis, we elected to include not only the DWI signal 
but also a gradient table, as it delineates the gradient utilized in the 
measurements.

In the Minimal Model (MM, Fig.  3A), a flattened vector of the DWI 
sample (cuboid chunk) is combined with a gradient table to create a 
single one-dimensional input vector that is processed by a single fully 
connected (FC) layer with ReLu activation. In contrast, the Dual Input 
Model (DIM, Fig.  3b) replaces the input layer with two independent 
fully connected (FC) layers, each processing one modality with a sep-
arate set of weights. The resulting tensors are then concatenated and 
passed to a hidden layer. The DIM model with weights (DIM-w, Fig. 
3C) assumes input processing in the same manner as the DIM model. 
4 
Fig. 2. Dual Input Model with importance weights (DIM-w) for 𝛩 = 5 and 𝐿 = 14; 
𝐼1 , 𝐼2 , 𝐼3 ,… are elements of 𝐵.
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Fig. 3. Array of different model variants: Minimal Model (A), Dual Input Model — DIM (B), Dual Input Model with importance weights — DIM-w (C), and Dual Input Model 
with convolution layer — DIM-conv (D); 𝐼1 , 𝐼2 , 𝐼3 ,… are elements of 𝐵.
S

S

S

S

However, it adds a step where the resulting tensors from the input 
stage are multiplied by two scalar values, 𝛿 and 𝛾. These two values 
are trainable parameters of the model. The objective was to enable 
the model to discern which portion of the input is more crucial for 
achieving the anticipated prediction, hence the designation of these 
values as significance weights. A significant discrepancy between the 
two would indicate a markedly disparate level of input importance. 
While it is conceivable that the two layers of the input stage may 
perform analogous to one bigger layer, the introduction of these two 
scalar values is more straightforward and allows for a certain degree of 
explainability.

The final model tested was a DIM model with convolution (DIM-
conv, Fig.  3D). The layer responsible for processing the flattened DWI 
signal vector was replaced by a one-dimensional convolution layer with 
a kernel size of 5, a stride value of 2, and 250 output channels. The 
output of the 1D convolution layer is a vector with a length of 1250. 
Consequently, the layer processing gradients table has a considerably 
smaller output size in comparison to other architectures.

The output layer, in the case of all architectures, generates a tensor 
𝑂 ∈ R𝛩×𝛩×𝛩. Each value represents an individual voxel and describes 
the probability with which it contains the same neural tract as the 
central voxel.

4.2. Tracking with a path search algorithm

Fig.  4 presents a neural tracking within a single cube in two di-
mensions for simplicity. The processing of diffusion-weighted imaging 
(DWI) data by a neural network yields a tensor 𝑂 ∈ R𝛩×𝛩×𝛩 of 
probabilities 𝑝 (see Fig.  4A). It is assumed a priori that a central voxel 𝑠
contains a currently elongating neural tract, or a seed point when new 
tracking begins, and thus the probability for 𝑠 is 1. Therefore, the result 
can be interpreted as a weighted directed graph of possible connections 
between neighboring voxels (Fig.  4B). Each voxel is represented as a 
node. The weights for the edges incoming to a given vertex are equal 
to 1 − 𝑝, as given by the neural network output. This approach to 
data interpretation reduces the problem of determining the position 
5 
of the neural tract to finding the optimal path between the center of 
the cube and its edge targets (𝑡1 and 𝑡2) (Fig.  4C). In this setting, an 
optimal path represents the most probable trajectory of the neural fiber 
in three-dimensional space. Given that the edge weight is expressed 
as 1 − 𝑝, minimizing the cost of the path, in turn, maximizes the 
probability. The shortest path algorithm, exemplified by the Dijkstra 
algorithm (Dijkstra, 1959), can be used for that. However, a graph 
represents voxels of a constant size, reflecting a real tissue volume. 
When finding a path between the origin and a target point (voxel), one 
can use a straight-line Euclidean distance 𝑑 between the two points as 
a heuristic method to accelerate the computation (Fig.  4C). Therefore, 
we decided to implement fiber tracking using the A* algorithm (Hart, 
Nilsson, & Raphael, 1968).

Fig.  5 visualizes the process of streamline elongation across multiple 
cubes. The algorithm for computing the entire tractogram 𝑇  as a set of 
streamlines 𝑆 is defined as follows. 

tep 0: Let 𝑐 denote the seed point at position 𝑐 = [𝑥, 𝑦, 𝑧], 𝛩 the size 
of the sample cube, 𝜏 the threshold for a positive class for a 
trained HyTract ANN, 𝑊  the termination distance in voxels 
from the seed point, and 𝐵 ∈ R𝛩×𝛩×𝛩×𝐿 the four-dimensional 
diffusion data tensor.

tep 1: Define an empty set of temporary streamlines 𝐻 = ∅, and an 
empty set of finished streamlines 𝐽 = ∅.

tep 2: Add a 1-element streamline containing seed point 𝑐 to the set 
𝐻 . At this moment the seed point becomes the end of the 
currently considered streamline, 𝑐 = 𝑠𝑖𝑘𝑖 .

tep 3: While 𝐻 ≠ ∅, for each streamline 𝑆 𝑖 in the set 𝐻 :

Step 3.0: Remove streamline from the set 𝐻 and store locally as 
𝑆 𝑖 = (𝑠𝑖1, 𝑠

𝑖
2,… , 𝑠𝑖𝑘𝑖 )

Step 3.1: Draw 𝐵 ∈ R𝛩×𝛩×𝛩×𝐿 from the DWI measurement 𝛺 so 
that the center is aligned with the end of the current 
streamline 𝑠𝑖𝑘𝑖 .

Step 3.2: Analyze data with a HyTract ANN to obtain a tensor of 
probabilities 𝑂 ∈ R𝛩×𝛩×𝛩.
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Fig. 4. Graph representation and a heuristic path search within a single cube. (A) ANN output representation in 2D; (B) A graph constructed based on the ANN output; (C) A 
path search schematic view with heuristic measures 𝑑 between starting node (𝑠) and target nodes (𝑡1 and 𝑡2); float numbers associated with edges are their weights.
Fig. 5. Elongating streamlines by sampling consecutive cubes from the diffusion data.
Step 3.3: Define set of border (edge) targets 𝑈 = (𝑡1, 𝑡2,… , 𝑡𝑈 ), 
where 𝑡𝑙 ≥ 𝜏, 𝑙 = 1,… , 𝑈 and 𝑡𝑙 ∉ 𝑆𝑖.

Step 3.4: For all 𝑈 border targets:

- Compute a path from the cube center to the target 
using the A* algorithm.

- Elongate streamline 𝑆 𝑖 by the computed path.
- Check if Euclidean distance 𝑑(𝑠𝑖1, 𝑠𝑖𝑘𝑖 ) ≥ 𝑊 .

· if yes, save the streamline to finished stream-
lines set 𝐽 .

· if no, save the streamline to unfinished set 𝐻 .
To compare the effects of streamline elongation with Dijkstra and 

A* algorithms we constructed several streamlines originating at the 
same seed point. Fig.  6 depicts reconstruction computed with Dijkstra 
algorithm (A) and A* algorithm (B), clearly showing both are the same. 
Therefore, A* shall be selected over Dijkstra due to better efficiency.

Due to the fact that this method operates on the voxels, a result-
ing streamline might contain sharp turns, such as those illustrated 
schematically in Fig.  7. This is not a natural alignment of the neural 
fibers within the brain. Hence, a smoothing method is required to 
interpolate the results. For this, we have used a simple moving average 
(SMA), which is commonly used in financial applications for price 
chart smoothing (Chou, 1969). This method averages 𝜐 points from the 
streamline 𝑆𝑖 = (𝑠𝑖1, 𝑠

𝑖
2,… , 𝑠𝑖𝑘𝑖 ). The mean over last 𝜐 voxels 𝑠 can be 

calculated as follows: 

𝑆𝑀𝐴𝑖 =
𝑠𝑖𝑘𝑖−𝜐+1, 𝑠

𝑖
𝑘𝑖−𝜐+2

+⋯ + 𝑠𝑖𝑘𝑖
𝜐

= 1
𝜐

𝑘𝑖
∑

𝑞=𝑘𝑖−𝜐+1
𝑠𝑖𝑞 , (1)

We have computed a smoothed result for a set of crafted examples 
with the window sizes 𝜐 = (3, 5, 7) to assess empirically the proper 
window size. As illustrated in Fig.  7, the larger the window size, the 
6 
smoother a streamline becomes. However, the anatomic relevance of 
such smoothing can be questioned when the result deviates signifi-
cantly from the original tract. Such a situation can be observed in Fig. 
7C and D in a U-shaped turn marked with arrows. Hence, a smaller 
window size of 𝜐 = 3 should be used, as it is still able to fix artifacts 
created by favoring diagonal transition between voxels (see regions 
marked with arrows in Fig.  7B).

5. Preparation of the training dataset

Training machine learning models for tractography imposes a chal-
lenge, given there is no ground truth tractograms available. Tractogra-
phy methods frequently yield a high incidence of false positive results, 
leading to the generation of spurious tracts. The presence of too many 
false positive results narrows the usable operating field, making it 
difficult to plan the surgery.

In this study, we introduce a novel approach to generate training 
and validation dataset of streamlines using multiple methods selected 
from the literature. Fig.  8 depicts the process which consists of the 
following steps:

1. The base tractograms are computed with methods selected from 
the literature for the same set of seed points (Fig.  8A).

2. One of the base tractograms, typically the one containing the 
highest number of streamlines, is picked as a reference (Fig.  8A, 
blue color).

3. Each streamline in a given reference is compared in a pairwise 
manner with the counterparts in other base tractograms (Fig.  8A, 
red and green colors).

4. A streamline is added to the dataset (Fig.  8B) if there are 
counterparts meeting certain criteria:
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Fig. 6. Comparison of streamlines reconstructed with Dijkstra (A) and A* (B) algorithms.

Fig. 7. Smoothing calculated tracts with SMA for 𝜐 = (3, 5, 7).
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Fig. 8. The generation of the training and validation dataset.
• the length of the shorter one is at least 𝛽% of the longer 
one.

• the similarity measure between the two streamlines is 
below a certain threshold (assuming measures where iden-
tical streamlines will give value of 0).

Such an approach allows to filter out false positive streamlines from 
the final dataset, which comprise only those tracts that have been 
confirmed by other methods.

Fig.  8C depicts the manner in which two streamlines can be com-
pared. Each streamline can be considered as a set of points in three-
dimensional space, connected in a particular order. We propose to com-
pute the similarity between the two streamlines as a Mean Euclidean 
Distance (MED) between the respective points: 

𝑀𝐸𝐷 = 1
𝑚

𝑚
∑

𝑗=1

√

(𝑥1𝑗 − 𝑥2𝑗 )2 + (𝑦1𝑗 − 𝑦2𝑗 )2 + (𝑧1𝑗 − 𝑧2𝑗 )2, (2)

where 𝑚 represents the length of the shorter streamline, and [𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ]
are the coordinates of the 𝑗th voxel of the 𝑖th streamline. For each of 
the reference streamline, we selected the streamlines with the lowest 
MED from the other methods as their closest counterparts. In the case 
when the length of the two considered streamlines differs, the MED is 
calculated for the entire length of the shorter streamline.

The resulting tractogram represents the average of the three base 
methods used. Hence, we name it a consensus tractogram. There are 
certain advantages to using such an approach. A tractogram computed 
with a single method often suffers from inconsistencies due to stochas-
tic variability, incomplete fiber reconstruction, and high incidence of 
false positive or false negative connections. The fibers of the consensus 
tractogram are those that have been confirmed by other methods, 
hence limiting the probability of a high incidence of false positive 
tracts. By adjusting the strategy of comparing different tractograms 
with each other, one can undoubtedly improve tractography output and 
adapt based on the domain knowledge. We identify this approach as 
a novel research area that we plan to investigate further to propose 
comprehensive methods and metrics for comparing single tracts with 
each other.
8 
6. Implementation and training

6.1. Dataset creation

To compute tractograms for the generation of the training and 
validation dataset we used MRI data from the Human Connectome 
Project (HCP) database (https://ida.loni.usc.edu/login.jsp). HCP is the 
result of efforts of co-investigators from the University of Southern 
California, Martinos Center for Biomedical Imaging at Massachusetts 
General Hospital (MGH), Washington University, and the University of 
Minnesota (Feinberg et al., 2010; Moeller et al., 2010; Setsompop et al., 
2012; Essen et al., 2012; Xu et al., 2012).

For the training and validation data sets, we randomly selected five 
individuals (subjects): mgh_1007, mgh_1010, mgh_1016, mgh_1019, 
and mgh_1031. For each of the five randomly selected subjects, we 
generated streamlines for tracts originating at the gray-white matter 
interface of Broca’s area. The complete process of creating labels is 
illustrated in Fig.  9. As the initial step, a T1-weighted image was coreg-
istered with an initially preprocessed DWI image to ensure uniform 
resolution and space. To achieve this, a gradient-free image from the 
DWI measurement was extracted using the dwiextract tool from the 
MRtrix3 package (Tournier et al., 2019). The T1-weighted image was 
then registered to extracted gradient-free image using Linear Image 
Registration Tool (FLIRT) (Greve & Fischl, 2009; Jenkinson, Bannister, 
Brady, & Smith, 2002; Jenkinson & Smith, 2001) from FSL software 
package (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; 
Smith et al., 2004; Woolrich et al., 2009), with six degrees of freedom 
for transformation. In order to prepare a set of seed points for trac-
tography from the gray-white matter interface of the Broca area, three 
masks were created using a coregistered T1 image. These were a white 
matter mask (WM mask), a gray-white matter interface mask (GMWMI 
mask), and a functional mask for the Broca area.

The white matter mask was used to restrict the scope of trac-
tography algorithms computation. This was achieved by computing a 
five-tissue-type (5TT) segmented tissue image from the T1 image using 
the 5ttgen tool (Smith, Tournier, Calamante, & Connelly, 2012) from 
the MRtrix3 package. A skull was removed and the brain was extracted 

https://ida.loni.usc.edu/login.jsp
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Fig. 9. Training label preparation pipeline.
using the BET2 tool (Jenkinson, Pechaud, & Smith, 2005; Smith, 2002) 
from the FSL package. This process allows for the straightforward 
extraction of a white matter mask (WM mask) from the 5TT image. A 
second mask, a gray-white matter interface mask (GMWMI mask), was 
obtained from the 5TT image using a dedicated tool, 5tt2gmwmi (Smith 
et al., 2012), which is also from the MRtrix3 package.

The primary objective was to perform tractography of fibers origi-
nating in the Broca area. To accomplish that a set of seed points for 
tractography algorithms was created to cover the gray-white matter 
interface of the region of interest. A mask for the entire Broca region in 
MNI152 space (Fonov et al., 2011; Fonov, Evans, McKinstry, Almli, & 
Collins, 2009) was retrieved from the Juelich histological atlas (Amunts 
et al., 1999) using FSLeyes (McCarthy, 2023) of the FSL package. The 
FLIRT and FNIRT (Andersson, Jenkinson, & Smith, 2010) tools from 
FSL were employed to compute transformation matrices, which were 
used to transform images from the MNI152 space to the subject space. 
The GMWMI mask (from a 5TT image) was overlaid with a functional 
mask, providing a set of seed points for tracking algorithms.

Three methods were used to compute base tractograms. The EuDX 
algorithm was used with the Constant Solid Angle (CSA) model (Gary-
fallidis, 2012) (Fig.  10A), Closest Peak Direction Getter (CPDG) with 
Constrained Spherical Deconvolution (CSD) model (Garyfallidis et al., 
2014) (Fig.  10C), and Deterministic Maximum Direction Getter
(DMDG) with CSD model (Garyfallidis et al., 2014) (Fig.  10C). The 
EuDX algorithm yielded the highest count of streamlines, thus it was 
selected as a reference. To create a set of streamlines for training and 
validation, we decided to set 𝛽 = 80%, and to consider three MED 
thresholds: 1 voxel (Fig.  10D), 2 voxels (Fig.  10E), and 3 voxels (Fig. 
10F). The dataset with the most restrictive MED value of 1 did not 
contain any tracts that extended beyond the Broca area. In contrast, 
the tractogram with a MED value of 2 did contain such tracts, but 
in a limited number. Therefore, we decided to use the dataset with 
streamlines picked with a MED value of three or less. The final training 
and evaluation dataset consists of 78,178 streamlines. The dataset has 
been divided into training and evaluation with a ratio of 8:2, with 
62,544 and 15,634 streamlines respectively. The division was made for 
each subject separately to ensure each is equally represented in training 
and evaluation. An individual label is generated for each streamline in 
the consensus tractogram independently. This is a three-dimensional 
binary tensor of the same size as the entire DWI scan. Voxel value is 
set to 1 if a streamline overlaps it. All remaining voxels are assigned a 
value of 0.

6.2. Implementation

The method was implemented using Python programming language. 
Neural networks were implemented using PyTorch (Paszke et al., 2019) 
9 
and Numpy (Harris et al., 2020). The latter was used to implement a 
path search algorithm as well. Charts for the figures were plotted using 
Matplotlib (Hunter, 2007).

Neural networks were trained using various parameters of a learning 
rate and weight decay. Three different optimizers for backpropaga-
tion were used: Stochastic Gradient Descent (SGD) (Robbins, 2007), 
Adam (Kingma & Ba, 2017), and a Sharpness-Aware Minimization 
(SAM) (Foret, Kleiner, Mobahi, & Neyshabur, 2021; Kwon, Kim, Park, 
& Choi, 2021). As a loss function, a Binary cross entropy loss was 
used (Goodfellow, Bengio, & Courville, 2016).

6.3. Training and validation

We conducted a series of experiments to develop the best ANN 
model to be used in the HyTract method. We compared the perfor-
mance of the HyTract for:

(a) various ANN architectures and learning parameters,
(b) different optimization algorithms,
(c) various sample sizes.

The following subsections define respective scenarios and describe their 
results.

6.3.1. Various ANN architectures and learning parameters
This experiment was designed to identify the optimal architecture 

among those proposed in the method overview. A set of learning 
parameters was selected to ensure reliable comparison of results. Each 
of the presented architectures was trained for 100 epochs with learning 
rates of 1e−3, 1e−4, and 1e−5. Even with such a short training period, 
we observed that the loss function decline was satisfactory, and that the 
ROC AUC reached values close to 1 for the training dataset. Therefore, 
it was deemed rational to use such a constraint to compare different 
proposed architectures and learning parameters in a reasonable time 
period. The training sessions were run using the Adam optimizer and 
Binary Cross Entropy loss function (Goodfellow et al., 2016).

The two models that exhibited the highest ROC AUC on the eval-
uation dataset were DIM and DIM-w ( Table  1). Fig.  11 illustrates 
a typical training pattern observed for the DIM-w model. During the 
initial 100 epochs, the loss function value exhibited a consistent decline 
(Fig.  11A), with no indication of over-training. The ROC AUC (Fig. 
11B) demonstrates a gradual increase, reaching values approaching 1 
for the training dataset. The optimal learning rate was determined to 
be 1e−4. The loss function on the validation dataset reached a value 
of 0.1028 for DIM and 0.1038 for DIM-w models. The ROC AUC value 
was 0.9587 for DIM and 0.9578 for DIM-w model. In the case of the 
latter, the significance weights reached values 𝛾 = 0.0622, associated 
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Fig. 10. Streamline datasets with different MED threshold values. Upper row represents basal tractograms created with EuDX (A), CPDG (B), and DMDG (C) methods. The lower 
row represents meta-tractograms derived from previously mentioned methods, at the MED thresholds of 1 voxel (D), 2 voxels (E), or 3 voxels (F).
Table 1
ANN models performance with different architectures (training and validation phases). 
MM — Minimal Model; DIM — Dual Input Model; DIM-w — Dual Input Model with 
weights; DIM-conv — Dual Input Model with convolution.
 Architecture Learning rate Min Loss Max ROC AUC

Train Val Train Val

MM
1e−3 0.118 0.1248 0.9378 0.928  
1e−4 0.0984 0.1082 0.9628 0.9531 
1e−5 0.1069 0.1093 0.9534 0.9505 

DIM
1e−3 0.1046 0.1103 0.9563 0.9496 
1e−4 0.0925 0.1028 0.9685 0.9587 
1e−5 0.1046 0.1068 0.9562 0.9536 

DIM-w
1e−3 0.1105 0.1159 0.9488 0.942  
1e−4 0.0922 0.1038 0.9687 0.9578 
1e−5 0.1028 0.1056 0.9581 0.9551 

DIM-conv
1e−3 0.1013 0.1104 0.960 0.950  
1e−4 0.0941 0.1062 0.967 0.9552 
1e−5 0.1106 0.112 0.9484 0.9467 

ith the gradient table, and 𝛿 = 4.2595 associated with the diffusion 
ata (Fig.  3). The DIM-w achieved performance that was very similar 
o that of the DIM model. However, it includes the significance weights, 
hich are an interesting addition in terms of explainability. Therefore, 
e decided to use the DIM-w model in all subsequent experiments.
The efficacy of various values of the weight decay (Krogh & Hertz, 

991) was evaluated on a DIM-w model to ascertain whether it would 
nhance the model’s performance. Fig.  12 depicts the outcomes of three 
xperiments with weight decay values of 1e−2, 1e−3, and 1e−4. The 
lots for the learning loss and ROC AUC values clearly indicate that 
he use of weight decay did not improve the model performance. The 
earning loss did not decrease for any of the tested weight decay values. 
espite the ROC AUC increasing during training for each experiment, 
t remained constant for the validation dataset, indicating no improve-
ent in terms of generalization. Therefore, it was determined that the 
inal model would not be trained using weight decay.
10 
6.3.2. Different optimization algorithms
Although the Adam optimizer is the most widely used, other al-

gorithms have been demonstrated to perform and generalize better 
in certain cases (Wilson, Roelofs, Stern, Srebro, & Recht, 2017). In 
addition to Adam, two other optimization strategies were tested on the 
DIM-w model: a classical Stochastic Gradient Descent (SGD) (Robbins, 
2007) and a Sharpness-Aware Minimization (SAM) (Foret et al., 2021; 
Kwon et al., 2021). The SAM method is a technique that simultaneously 
minimizes loss value and sharpness. Therefore, it requires an optimiza-
tion algorithm to operate on. The experiment were run with Adam, 
SGD, and SAM with either SGD or Adam serving as the optimization 
algorithm’s foundation. Fig.  13 summarizes the training results in terms 
of the learning loss and ROC AUC. For the SGD optimizer and SAM 
with SGD as the backbone, the learning loss decreased in the first few 
epochs and remained constant for the remainder of the training. The 
ROC AUC for these two optimizers reached levels below 0.85, which 
is considerably less than for other optimizers. The plots exhibited a 
similar trend for both the training and validation phases. In the case of 
Adam and SAM with Adam backbone, consistent decline in learning loss 
can be observed throughout the entirety of the training process. The 
values of ROC AUC are comparable and reach levels above 0.95, which 
are typical for the Adam optimizer, as evidenced by the experiments 
that elucidated the optimal architecture. The use of SAM optimizer with 
Adam backbone did not result in superior outcomes. This indicates that 
the pure Adam optimizer gives the best performance.

6.3.3. Various sample sizes
One of the parameters of a neural network that can profoundly 

affect the path search stage is the size of the sample analyzed in a 
single step. As the cube size increases, the amount of data processed by 
the network increases, the number of parameters grows (see Table  2), 
and the granularity of the search changes. The DIM-w neural network 
was trained with three cube sizes: 5 × 5 × 5 with close to 15 million 
parameters, 7 × 7 × 7 with over 30 million parameters, and 9 × 9 × 9 
with almost 58 million parameters. A cube of dimensions 3 × 3 × 3 was 
not considered, as in such a case, the voxels on the border are direct 
neighbors of a central voxel. Consequently, there is a paucity of space 
for the path search algorithm to operate effectively.
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Fig. 11. The results of the DIM-w model training. Panes depict graphs of a loss function (A) and ROC AUC performance measure (B). Solid lines represent the training phase, 
while dashed lines evaluation. Different colors represent training with respective learning rates.

Fig. 12. The results of the DIM-w model training using various weight decay values.

Fig. 13. The results of the DIM-w model training using various optimization algorithms.
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Table 2
Effect of cube size on the number of trainable model parameters in a DIM model 
architecture.
 Cube size Number of parameters 
 5 × 5 × 5 14 938 127  
 7 × 7 × 7 30 416 345  
 9 × 9 × 9 57 822 731  

Table 3
Loss and ROC AUC values for training DIM-w model with various cube sizes.
 Cube size Min loss Max ROC AUC
 Train Val Train Val

 5 × 5 × 5 0.0865 0.1012 0.9734 0.9610 
 7 × 7 × 7 0.0487 0.0579 0.9824 0.9717 
 9 × 9 × 9 0.0307 0.0369 0.9875 0.9788 

All three variants were trained on the same dataset, with the same 
parameters of learning rate 1e−4, and weight decay set to 0. Values for 
a loss function and ROC AUC are summarized in a Table  3. The model 
variants with a cube size of 7 and 9 significantly outperform the one 
with a cube size of 5. The model with a cube size of 7 achieved an ROC 
AUC of 0.9714 on a validation dataset after 100 training epochs. The 
model with a cube size of 9 reached an even higher ROC AUC value on 
the same dataset, at 0.9787.

One potential explanation for this phenomenon is the number of pa-
rameters (see Table  2). The model for a cube size of 7 is approximately 
twice as large as the model for a cube size of 5. The model for a cube 
size of 9 is even larger, with a total of almost 58 million parameters. 
Additionally, the view is much broader in larger cubes, allowing us to 
verify whether a branching fiber has a continuation and is a true fiber, 
or if the branching is just merely a data error.

7. Testing results

DIM-w model was trained and picked as the optimal architecture 
to compute probabilities for the streamline reconstruction with the 
heuristic A* algorithms. In this section we describe experiments aimed 
at the computation of the tractogram originating in the primary visual 
cortex. These experiments were performed on the data from a subject 
not present in the training and validation dataset.

7.1. Testing dataset

The following experiments were carried out on the testing dataset, 
which was created to test for subject and region-related bias. Another 
individual (subject), mgh_1027, was randomly selected from the HCP 
dataset and three tractograms were computed using the same approach 
as described in the Section 6.1. However, in this case, the V1 pri-
mary visual cortex (Amunts, Malikovic, Mohlberg, Schormann, & Zilles, 
2000) was selected as the functional area. Moreover, we did not filter 
streamlines with the MED similarity measure, as our intention was to 
directly compare HyTract tractograms with base tractograms computed 
using EuDX, DMDG, and CPDG methods, as presented in Fig.  14.

7.2. Tract reconstruction for V1 primary cortex for the test subject

DIM-w models for cube sizes of 5, 7, and 9 were used to reconstruct 
neural tracts originating in the V1 primary cortex. In the streamline 
elongation phase a set of 𝜏 = (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) values was picked 
for marking target vertices on the sample border. Multiple values of 𝜏
as the method is not limited to a single value. Manipulating this value 
will result in streamlines of varying confidence, allowing to construct 
a tractogram that best suit a specific need. The stopping criterion was 
set to 𝑊 = 70 voxels to avoid reconstructing very long tracts. All other 
parameters were held constant. Streamlines with a length of less than 
12 
Table 4
Statistics of streamlines computed with a HyTract method for various cube sizes and 
border target thresholds.
 Cube size Threshold # streamlines Streamline length
 Mean Max  
 5 × 5 × 5 0.4 4 17 18  
 

7 × 7 × 7

0.4 4848 24.80 73  
 0.5 1190 22.53 46  
 0.6 403 19.86 33  
 0.7 67 18.46 26  
 0.8 18 16.94 21  
 

9 × 9 × 9

0.4 12899 32.79 105  
 0.5 6459 24.94 51  
 0.6 3373 24.21 92  
 0.7 889 20.69 48  
 0.8 449 18.73 40  
 0.9 296 18.90 36  

15 voxels were deemed unsuitable, as such short tracts are typically 
spurious. Table  4 summarizes these experiments. HyTract method with 
a cube size of 5 computed streamlines longer than 15 voxels only for 
𝜏 = 0.4. Tractograms computed with a cube size of 7 and 9 contain 
a considerable number of streamlines exceeding 15 voxels, with some 
exceeding 100. Given that the stopping criterion distance was measured 
in a straight line between the origin (𝑠𝑖1) and the current end of the 
streamline (𝑠𝑖𝑘𝑛 ), the presence of such long streamlines is not unex-
pected. When a more restrictive threshold value is used, the number 
and mean length decrease as expected. As the size of a single sample 
is increased, the number of computed streamlines and their length also 
increase. This finding is consistent with previous conclusions, which 
indicated that larger cube sizes yielded superior model performance 
due to the broader interpretation of the data. Furthermore, the path 
between the cube center and the border is longer, allowing for the 
passage through the voxels of lower values, which might otherwise 
have been excluded.

A visual evaluation of the streamlines reveals that the HyTract 
method is capable of accurately computing tracts originating within 
the primary visual cortex. In addition to a short-range tracts that 
are restricted to the V1 area alone, three long-range association fiber 
bundles are visible in Fig.  15B, which are expected to be present 
anatomically (Vanderach & Gould, 2016). One of these tracts moves 
superior to the corpus callosum and rostral towards the frontal lobe. 
The second tract reaches towards the thalamus, while the third towards 
the temporal lobe.

7.3. Comparison with base tractograms

All HyTract tractograms were compared to the tractograms com-
puted by the reference methods (EuDX, CPDG and DMDG) using mean 
Euclidean distance. This was achieved by identifying the closest fiber 
equivalent for each HyTract streamline in the reference methods. The 
results of this comparison are presented in Fig.  16, where mean, min-
imal and maximal MED values registered for the closest counterparts 
of a HyTract streamlines in reference methods are given. The color 
gradient represents low values in bright and high values in dark color. 
Vertical axis denote various threshold values 𝜏 for a given cube size, 
and horizontal axis represent reference methods.

The HyTract streamlines exhibited the closest proximity to the EuDX 
tractogram, with a mean MED below 10 voxels for cube size of 7 
with threshold values of 0.4, 0.6, and 0.8. Additionally, the same was 
observed for cube size 9 with threshold values of 0.8 and 0.9. These 
tractograms are presented in three anatomical planes in Fig.  15. It 
should be noted that tractograms with a cube size of 7 and a threshold 
of 0.8, as well as with a cube size of 9 and a threshold of 0.9, have 
been omitted from the figure due to the relatively small number of 
streamlines. Comparison to CPDG and DMDG methods yielded lower 
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Fig. 14. Tractograms in the test set computed with EuDX (A), CPDG (B), and DMDG (C) methods.

Fig. 15. Tractograms originating in the primary visual cortex (V1) computed with EuDX reference method (A), and HyTract method with cube size 7 and threshold 0.4 (B), cube 
size 7 and threshold 0.6 (C), cube size 9 and threshold 0.8 (D).
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Fig. 16. Heatmap presenting comparison between HyTract tractograms with diverse cube size and threshold values, and three reference methods.
level of similarity with mean MED value above 15. The rationale for this 
discrepancy is that the EuDX tractogram was selected as a reference for 
the construction of consensus tractograms. Consequently, the HyTract 
tractograms will exhibit the highest degree of similarity to the base 
tractogram computed with this method.

8. Summary and discussion

In this paper we introduce a new tractography technique exploiting 
the advantages of the machine learning techniques. Due to its hybrid 
nature we name it HyTract–Hybrid Tractography. The method com-
bines artificial neural network and the A* path search algorithm. The 
purpose of the neural network is to analyze the diffusion data and 
generate a graph of possible connections between voxels, representing 
structural connections within the brain. This reduces the problem of 
computing neural tracts to finding optimal paths in the graph. The 
results of experiments reported in this paper confirm the efficacy of 
the proposed approach.

The neural network models tested for this method were trained on 
the data from five subjects from the International Human Connectome 
Project (HCP) initiative. Even though the number of subjects is rel-
atively small, there were more than 78,000 streamlines to train and 
evaluate on. the ANN analyzes data in small samples, with a single scan 
providing hundreds of thousands of cubes to train on.

In this paper, we propose a novel method for the generation of 
training and validation datasets by computing consensus tractograms. 
This approach leverages the information from the tractograms com-
puted with multiple methods. By selecting one of them as the reference 
and comparing its streamlines with others with a proposed similarity 
measure, we are able to construct a set of training and validation 
streamlines with less false positive tracts. As the similarity measure, 
we employed Euclidean distance, where the mean distance is computed 
between two tracts. Despite the fact that this metric may not be the 
14 
optimal method for comparing tractograms, to the best of our knowl-
edge, there is no other method for comparing individual tracts with 
each other. Mean Euclidean Distance (MED) provides the opportunity 
to quantify eventual displacement, shifts of tracts in space, or local 
deviations, similarly to the RMSD method used in protein design (Li, 
2013). In subsequent studies, we aim to develop the concept of con-
sensus tractograms further to investigate suitable similarity metrics for 
comparing tracts, taking into account anatomical relevance.

Experimental results corroborate this conclusion and demonstrate 
that the optimal architecture is a Dual Input Model with and without 
weights (DIM-w and DIM). The DIM-w model may be a more suit-
able choice given the importance weights, which provide additional 
explainability. The results with various sample sizes suggest that the 
ANN can better analyze the diffusion signal when the size is greater. 
At the same time, the number of samples to analyze decreases as more 
workload is shifted towards the path search part. In light of these 
findings, we sough to ascertain whether the utilization of an alternative 
optimization algorithm, distinct from the gold standard Adam, would 
result in enhanced outcomes. However, experiments employing SGD 
and SAM (with both Adam and SGD backbones) demonstrated inferior 
performance of the model.

The ANN’s simple architecture requires significantly less compu-
tational power, allowing it to run efficiently on standard hardware 
without the need for high-end GPUs. This reduces energy consumption, 
operational costs, and overall carbon footprint, making it more sus-
tainable and environmentally friendly. Additionally, these lightweight 
models can be effectively trained with sparse amounts of data, making 
them well-suited for applications where large, labeled datasets are 
limited or difficult to obtain. Using a training and validation dataset of 
streamlines filtered with comparison to other methods, limits a number 
of false positive results, thereby limiting the number of spurious tracts. 
Future work is necessary to assess whether similarity measures other 
than the mean Euclidean distance can be employed to better reflect the 
similarity between tracts, including anatomical relevance. This subject 
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Table 5
Notation and abbreviations.
 Notation Description  
 𝑇 Tractogram defined as a set of streamlines.  
 𝑆 𝑖 𝑖th streamline in a tractogram  
 𝑠𝑖𝑗 𝑗th point in an 𝑖th streamline  
 𝑛 Total count of streamlines in a tractogram  
 𝑘𝑖 Total count of points in an 𝑖th streamline  
 𝛺 ∈ R𝑑𝑥×𝑑𝑦×𝑑𝑧×𝐿 Recording of the whole brain volume  
 𝐵 ∈ R𝛩×𝛩×𝛩×𝐿 Cuboid chank with size 𝛩  
 𝐺 ∈ R3×𝐿 Gradient table from the DWI experiment  
 𝐿 Number of acquisitions per DWI experiment with different gradients 
 𝑂 ∈ R𝛩×𝛩×𝛩 Three-dimensional tensor, output of the ANN model  
 𝑝𝑖𝑗 Probability value for the 𝑗th voxel of 𝑖th streamline  
 𝜏 Threshold for picking border targets at the edge of the cube  
 𝑡𝑖 Border targets at the edge of the cube  
 𝑊 Stopping criterion (termination threshold) in voxels  
 𝛽 Length threshold for comparison between a streamline pair  
 𝑑 Euclidean distance measure  
 𝐻 , 𝐽 Working sets for storing streamlines during the tract reconstruction  
 𝜐 The size of the window in Simple Moving Average  
 CPDG Closes Peak Direction Getter  
 CSA Constant Solid Angle model  
 CSD Constrained Spherical Deconvolution  
 DIM Dual Input Model  
 DMDG Deterministic Maximum Direction Getter  
 DWI Diffusion-weighted Imaging  
 MED Mean Euclidean Distance  
 MNI152 Reference space for MRI volume registration  
 MRI Magnetic Resonance Imaging  
 SAM Sharpness-Aware Minimization  
 SGD Stochastic Gradient Descent  
 SMA Simple Moving Average  
 WM White Matter  
 WMGMI White Matter Gray Matter Interface  
is of interest to us and represents a research topic that is currently being 
investigated in depth.

The fiber reconstruction process is undertaken utilizing the A* 
algorithm, which is an extension of the traditional Dijkstra algorithm. 
This approach enables the utilization of the Euclidean distance as a 
heuristic measure, thereby enhancing the efficiency of the reconstruc-
tion process. It is noteworthy that the reconstruction of a path can be 
undertaken with any cube size. However, it should be noted that the 
A* algorithm is a heuristic approach; therefore, the use of overly large 
cube sizes may result in a reduction in the efficiency of the method. 
Consequently, it is recommended to employ cube sizes that do not 
exceed 9, as experiments with these sizes have yielded satisfactory 
outcomes. 

It should be pointed out that this method does not require tedious 
preprocessing steps, as the neural network is capable of learning to 
handle data inadequacies. Furthermore, this is not a black box model, 
as tractograms are computed with an explanation regarding the under-
lying data. The ANN provides a tensor of the likelihoods describing the 
probability of a given voxel containing a neural tract in a given context. 
This can be visualized as a graph of possible structural connections. Po-
tential users – such as radiologists or neurosurgeons – will be provided 
with both a graph and computed tractograms, which will offer valuable 
insight into the rationale behind reconstructing particular streamlines. 
Experiments with neural tracts originating from the V1 primary visual 
cortex, employing both phases of the method, indicate that HyTract is 
capable of precise reconstruction of the desired tracts. This makes it a 
convenient tool that can be incorporated into the preoperative pipeline 
for neurosurgery as a decision support system.

The subsequent stage of this project aims to implement the HyTract 
method in a clinical setting, with the objective of validating its practical 
applicability. This implementation will serve as an introduction to the 
forthcoming clinical trials. The implementation is scheduled to take 
place in the Department of Neurosurgery at the National Oncology 
Center in Warsaw, where we have ongoing collaborations with neu-
rosurgeons on various other projects. These neurosurgeons have also 
15 
provided guidance and advice on the presented work. The result of mu-
tual discussions is also the need to integrate the HyTract method with 
fMRI functional studies done preoperatively. In this work, the interface 
between the white and gray matter of individual functional regions of 
the cerebral cortex, labeled based on functional atlases, was selected as 
the starting point for tracking. Ultimately, we intend to use the results 
of preoperative fMRI studies for this purpose, creating a comprehensive 
pipeline for preoperative connectivity studies for neurosurgeons.

Hybrid nature of this method allows for the potential use of its 
elements for other tasks related to brain diffusion. For instance, an ANN 
can be trained to detect crossing fiber points, which are of significant 
importance to neurosurgeons, as damaging them during surgery would 
disrupt connectivity with several cortical areas simultaneously. The 
ANN can be unaltered, and the A* algorithm can be replaced by other 
implementations, allowing further conclusions to be drawn regarding 
the white matter organization, such as connectivity studies between 
two regions of interest.

Despite the advantages of our approach, several limitations must 
be considered. While training with consensus tractograms helps reduce 
the number of false positives, it does not eliminate them entirely. 
Therefore, when constructing a tractogram, it is necessary to adjust the 
threshold value 𝜏 to obtain results suited to specific needs. Additionally, 
when processing substantially larger cube sizes (significantly exceeding 
the presented size of 9), it may be beneficial to use Dijkstra’s algorithm 
for path reconstruction, as the A* algorithm’s heuristic nature could 
lead to suboptimal results.

Furthermore, future work is needed to develop more robust similar-
ity measures for tract comparison in consensus tractograms, and a more 
suitable heuristic function for A*. While Euclidean distance effectively 
captures the spatial relationship between points, it does not account 
for anatomical relevance, highlighting the need for improved distance 
metrics in future iterations of the method.

Notation and abbreviations

Table  5 summarizes the notation and abbreviations used in this 
article.
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