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Abstract—Neurosurgery is a highly demanding field of
medicine. Its subject is the central nervous system, which
governs all critical functions of the human body. In recent
years, artificial intelligence has assisted neurosurgeons’ work
through decision support systems that help better plan and
perform safe surgeries. This paper introduces a novel method
for analyzing diffusion data from Magnetic Resonance Imaging.
It uses a deep learning to produce maps of white matter bundles.
This information is suitable for multiple applications, including
the computation of whole-brain maps of fiber crossing points.
Neurosurgeons and radiologists can use such knowledge for pre-
operative planning and intra-operative navigation.

Index Terms—neurosurgery, fiber bundles, deep learning,
magnetic resonance imaging, decision support system

I. INTRODUCTION

Neurosurgery is a necessary treatment for many disorders
of the central nervous system. Even though this medical
speciality emerged around brain tumor surgery, its applica-
tions are vast. Among many diseases, neurosurgeries help to
treat meningitis, hydrocephalus, head trauma or movement
disorders. Even though such interventions are necessary, they
impose certain risks given the delicate nature of the brain
tissue and its role in controlling bodily functions. The brain’s
cortex consists of neural cell bodies attributed to information
processing and cognition. The axons of these cells constitute
the white matter underneath, connecting various areas of
the cortex and transmitting nerve impulses between them.
Together they are organized into complex neural circuits, pro-
viding a basis for all vital body functions, such as cognition,
movement, sight, or speech production and comprehension
[1]. Knowledge of the location of the functional regions of
the cerebral cortex, as well as the topology of the bands of
white matter, is crucial for a successful and safe surgery. This
information allows planning the surgery in such a way as to
reduce the risk of complications associated with damage to
essential, highly specialized structures.

Over the years, many decision support systems have been
proposed to support neurosurgeons. Deep learning techniques
have been used to detect and classify brain tumors to
help radiologists make diagnoses and surgeons prepare for
surgeries. Tumor detection, segmentation and classification

are difficult given the wide variety of shape and size. For
successful resection of a tumor mass, it is critically important
to remove as much as possible to limit tumor re-growth
[2], [3]. Another important aspect of preoperative planning
is precisely identifying the eloquent regions of the cerebral
cortex and the nerve pathways that connect them to other
areas of the brain and body. Many algorithms have been
proposed that, by analyzing functional data (functional MRI,
fMRI), can pinpoint the regions responsible for the specific
functions (e.g. hand movement or speech) [4], [5]. Another
class of algorithms analyzes diffusion-weighted MRI data and
can thus indicate the likely topology of neural pathways near
the site of intervention [6]-[9]. All of this information is
valuable to the surgeon, who is trying to plan the procedure
to minimize the risk of damage to these structures, which
could lead to patient impairments.

Neural signal analysis is also a fascinating emerging field,
with an example of a decision support system used for Deep
Brain Stimulation surgery to treat Parkinson’s disease [10],
[11]. The target of such surgery is the Subthalamic Nucleus
(STN), a structure poorly visible on Computed Tomography
(CT) or MRI images. During the surgery, a set of micro
recording electrodes is inserted into the brain, and recordings
obtained in such way are analyzed to help the neurosurgeon
correctly locate the STN structure in stereotactic 3D space.

Machine learning techniques are also used to predict
treatment outcomes in patients. That includes treatment of
arteriovenous malformations [12], prediction of cerebral va-
sospasm [13], [14] or the outcome of aneurysmal sub-
arachnoid haemorrhage [15]. Data obtained from electroen-
cephalography, and intraoperative electrode recordings were
used to train models for predicting signal patterns for lan-
guage, seizure and face recognition [16], including studies
aimed at predicting the outcomes of epilepsy surgeries [17]—
[19].

In this paper, we propose a novel approach comprising an
artificial neural network to build graphs of neural connections
within the brain, which can give valuable insight to neuro-
surgeons.
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II. RELATED WORKS

Information about neural connections within the brain can
be obtained through tractography [20]. This approach uses
data from diffusion MRI experiments to assess the topology
of nerve fibers. Many methods have been proposed to tackle
this problem, including simple mathematical models like
linear forced vector differential equation [21] or tensor de-
flection [22]. With the development of artificial intelligence,
classical machine learning models and neural networks were
used. The first was a random forest classifier proposed by
Neher et al. [6]. Further methods include feedforward neural
network (FFNN) [7], recurrent neural network (RNN) [8], [9].
Methods of this kind are well suited to utilize raw diffusion
data without requiring lengthy preprocessing.

The performance of tractography methods has been studied
in benchmarking experiments. Although many methods cor-
rectly predict neural fibers, the rate of false positive results is
high. Unfortunately, due to the low accuracy level, the clinical
applicability is limited [23], [24]. Therefore there is a need
for further work on solutions in this area of research.

III. PROBLEM FORMULATION AND ARCHITECTURE
OVERVIEW

In this paper, we propose an approach comprising a neural
network employed to analyze raw MRI diffusion data (Fig.
1). Matrix produced by this network can be used for dif-
ferent further studies regarding white matter characteristics
in the brain, e.g., connectome related works or envisioning
the topology of the nerve fibers near the surgical field or
connectivity studies between associated functional regions of
the cortex.

We developed several artificial neural network archi-
tectures, including networks containing one and three-
dimensional convolution layers. Next, we conducted a series
of experiments for real data. The goal was to learn these
networks. Unfortunately, most did not train as the loss, and
ROC AUC metrics did not change over 50 epochs. Based on
our research, we found that complex network architectures
do not work in this case. We investigated simpler structures.
Finally, we achieved the best results and performance for a
simple feedforward network.

The proposed neural network is depicted in Fig. 2. It
consists of two stages. In the first stage, two separate dense
layers, activated by the ReLU function [25], process input
data in parallel. One of the layers processes four-dimensional
diffusion measurements, and the second layer processes gra-
dient table entries (Fig. 2) corresponding to the diffusion data.
Data is sampled from an experiment to include measurements
of the water diffusion in the main available directions. After
this stage, gradient table is represented by a tensor of 1000
values, while diffusion data by a tensor of 5000 values.
Both outputs from the two parallel layers are combined. The
next stage uses two dense layers, activated by the ReLU
function or followed by the sigmoid function, learning to
predict the final output from provided data. This network is
suited to operate on small portions of the input data, e.g.,
a series of three-dimensional cubes of a shape 5x5x5. In

such a cube, a central voxel is assumed to contain neural
fiber under investigation, and the neural network result gives
the extension of this fiber. Output is a three-dimensional
array of probabilities calculated for each voxel on the surface
of the cube, describing their likelihood of containing the
same neural fiber as the central one. Probability is depicted
with colors from white (low probability) to dark blue (high
probability).

Voxels with high probability located on the cube’s surface
become a seed point for the next cube drawn from the
diffusion data. Stacking them together allows the construction
of a graph of neural connections within the white matter.
The process of detecting fiber crossing points based on the
results obtained from a neural network is presented in Fig.
3. Vertices marked with red have more than two edges and
represent voxels with possible fiber crossings. Such a graph
can serve multiple purposes, e.g. detecting splitting, joining
and crossing fibers. It can be useful in any future research
involving the human connectome.

IV. NUMERICAL EXPERIMENTS

The performance of our approach was evaluated on pub-
licly available datasets.

A. Dataset creation

We used data from the Human Connectome Project (HCP)
database (https://ida.loni.usc.edu/login.jsp). HCP is the result
of efforts of co-investigators from the University of South-
ern California, Martinos Center for Biomedical Imaging at
Massachusetts General Hospital (MGH), Washington Univer-
sity, and the University of Minnesota [26]-[30]. For each
of the five randomly selected subjects, we have prepared
tractograms for fibers originating on the gray and white
matter interface of the Broca’s area. A mask derived from
an anatomical scan limited the considered area to the brain’s
white matter. We used the Constant Solid Angle (CSA)
reconstruction method to estimate Orientation Distribution
Function (ODF) in the diffusion scans [31]. We used ODF
peaks to track neural fibers and prepared labels based on
computed streamlines. A streamline can be depicted as a
series of connected points in a three-dimensional space. A
voxel is marked with a positive value in the label if it contains
a continuation of the considered streamline. Streamlines gen-
erated for each subject are divided into train and evaluation
subsets with a ratio of 8:2.

B. Neural network training

Obtained white matter bundles were used to train a neural
network. Each subject’s white matter topography was split
into training and evaluation subsets of streamlines. Data
loader iterates over each streamline and coordinates of the
current point become coordinates for the central point of a
sample. It is sampled from the scan data as a small cube,
usually of a shape of 5x5x5 voxels. Variety of sizes were
tested. However, cubes with the shape 5x5x5 gave the best
results. Input to the network comprises two vectors. First rep-
resents a part of diffusion measurement done in 14 directions
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Fig. 2. Architecture of the neural network.

Fig. 3. Fiber crossing points determined based on the results obtained from
a neural network.

and is described by a vector of size (5,5,5,14). Second is a
gradient table corresponding to the measurements, describing
the strength and direction of the gradient, represented by
a vector of size (14,3). We trained a neural network for
300 epochs with Adam optimizer [32] with a learning rate
varying from le-3 to le-7 and a batch size of 32. We did
not foresee weight decay in this approach as it did not
yield better results. As a scoring function, we used binary
cross-entropy loss (1). During the training, the loss decreased
steadily for both training and validation datasets up to epoch
100. After that, we saw a steady increase in the validation
set, indicating network over-training (Fig. 4). Similarly, we
were calculating ROC AUC [33] value for each epoch, which
started to decrease during the validation phase at the exact
moment the validation loss started to grow (Fig. 5). This trend
holds up to epoch 300. Hence we did not see a reason to keep
training the network for longer.
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C. Results and discussion

A neural network was trained with various learning rates
for 100 epochs. The results for train and evaluation datasets
are collected in Table I. It can be seen that the best results
were obtained using a learning rate of le-4. We use the
ROC curve to show the final model performance. Area under

TABLE I
EXPERIMENTS WITH VARIOUS LEARNING RATES.
Learning rate Loss ROC AUC
Train Evaluation Train Evaluation
le-3 0.1046 | 0.1106 0.9562 | 0.9493
le-4 0.0925 | 0.103 0.9685 | 0.9587
le-5 0.1046 | 0.1068 0.9562 | 0.9536
le-6 0.1242 | 0.1242 0.9272 | 0.9272
le-7 0.1588 | 0.1586 0.8373 | 0.8377

the curve equals to 0.9586, showing excellent efficiency of
the model (Fig. 6). Analyzing such a curve is much more
informative than simply calculating accuracy for predictions
above a certain threshold. In binary classification for medical
applications, choosing a threshold where the number of true
positives is high, even with the cost of a higher false-
positive rate, is desirable. A sub-optimal number of false-
positive results is acceptable to avoid damaging important
brain structures.

True Positive Rate
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Fig. 6. ROC curve for the trained neural network.

V. SUMMARY AND CONCLUSIONS

A presented neural network produces data that can be
easily used to create maps of white matter bundles within
the brain, which can be used in multiple applications. One
particularly interesting is the creation of the whole-brain
map of crossing points. Such a crossing point indicates the
location where neural fiber bundles split, merge or cross.
Cases of this type involve the most essential fibers, damage to
which can cause severe impairments. Areas, where multiple
bands of white matter cross or converge, must be if possible
avoided during neurosurgical interventions. Damage to them
would, unfortunately, affect multiple connections and would
adversely affect many brain regions. That is a clear suggestion
for a surgeon that the surgical intervention path shall, if
possible, spare such regions, and the scope of the intervention
itself shall be limited to the area which does not contain
such locations. Given the high rate of false positives in
tractography analyses, visualizing only crossing points allows
the neurosurgeon to focus on these locations with special
attention.

Described approach is a working proof of concept, basic
research that can be used in future work regarding brain
connectome or neurosurgical planning. It can be applied both
for the detection of brain regions containing multiple neural
pathways as well as mapping bundles leading from and to
cortex eloquent regions. Finally described method, together
with additional machine learning algorithms, can be used for
the construction of full brain pictographs. Applying different
thresholds to results given by a neural network it would be
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possible to obtain tractograms with different sensitivity as to
the existence of neural connections.

We are constantly consulting our research outcome with
neurosurgeons and radiologists to apply this in practice. The
presented approach is a proof of concept. The final model
will be trained on the dataset curated by a trained radiologist.
It will help to improve the anatomical significance of the
results further. In addition to determining the intersection
points of nerve fibers, we also plan to use this neural network
to calculate tractograms. Our preliminary work indicates that
this will be possible without significant modifications to the
architecture of the presented solution.
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