
RESEARCH ARTICLE

Classification of masked image data

Kamila Lis☯, Mateusz Koryciński☯, Konrad A. CiecierskiID
☯*

Bioinformatics and Machine Recognition Department, Research and Academic Computer Network, Warsaw,

Poland

☯ These authors contributed equally to this work.

* Konrad.Ciecierski@nask.pl

Abstract

Data classification is one of the most commonly used applications of machine learning. The

are many developed algorithms that can work in various environments and for different data

distributions that perform this task with excellence. Classification algorithms, just like other

machine learning algorithms have one thing in common: in order to operate on data, they

must see the data. In the present world, where concerns about privacy, GDPR (General

Data Protection Regulation), business confidentiality and security are growing bigger and

bigger; this requirement to work directly on the original data might become, in some situa-

tions, a burden. In this paper, an approach to the classification of images that cannot be

directly accessed during training has been made. It has been shown that one can train a

deep neural network to create such a representation of the original data that i) without addi-

tional information, the original data cannot be restored, and ii) that this representation—

called a masked form—can still be used for classification purposes. Moreover, it has been

shown that classification of the masked data can be done using both classical and neural

network-based classifiers.

Introduction

In the present world, the task of classification is common. In almost every aspect of our lives,

the classification of our data becomes more useful and essential. To facilitate the machine

learning algorithms’ power and get an in-depth analysis of our data, we have to provide the

data, perform the analysis, and interpret the results.

The machine learning sophisticated classification algorithms find in–data hidden features

and then use them for discrimination. For this, the training data must be provided so that a

model describing data can be constructed during the learning process [1].

Furthermore, while this might seem to be an obvious case, more and more often, such a

requirement alone proves to be an obstacle. For various reasons, many companies that want to

outsource data classification cannot provide virtually any training data. Such a situation can be

caused by many reasons, such as corporate policy, security, GDPR, government regulations,

legal constraints, etc.

One is faced with a dilemma of how to analyze the data without having direct access to it.

The classical approach to data protection, i.e., encryption, is specifically designed to prevent

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lis K, Koryciński M, Ciecierski KA (2021)

Classification of masked image data. PLoS ONE

16(7): e0254181. https://doi.org/10.1371/journal.

pone.0254181

Editor: Qingzhong Liu, Sam Houston State

University, UNITED STATES

Received: February 17, 2021

Accepted: June 21, 2021

Published: July 6, 2021

Copyright: © 2021 Lis et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: We use public

datasets: CIFAR and MNIST. The CIFAR-10 and

CIFAR-100 public datasets can be freely

downloaded from the web page at https://www.cs.

toronto.edu/~kriz/cifar.html. The page provides the

datasets in formats suitable for programs written in

Python, Matlab, and C. Datasets are also available

through the TORCHVISION portion of the PyTorch

library for Python (https://pytorch.org/vision/

stable/index.html). The MNIST public dataset can

be freely downloaded from its web page at http://

yann.lecun.com/exdb/mnist. The MNIST dataset is

also available through the TORCHVISION portion of

https://orcid.org/0000-0003-2471-3016
https://doi.org/10.1371/journal.pone.0254181
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254181&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254181&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254181&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254181&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254181&domain=pdf&date_stamp=2021-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254181&domain=pdf&date_stamp=2021-07-06
https://doi.org/10.1371/journal.pone.0254181
https://doi.org/10.1371/journal.pone.0254181
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist


that. The encryption techniques are purposefully designed in such a way that statistical analysis

of the encoded form provides no clues about the original data [2].

Another approach is a blind one, i.e., to construct a classifier using the synthetic or publicly

available data only, let the customer test it on his own and wait for the results to improve the

classifier. Such a process being by nature iterative, is slow and due to constrained feedback of

information leads to sub–optimal results.

What is needed is a mapping that, given the original data, would produce its masked form.

The masked form would retain the necessary information from the original data, but in a form

that is not interpretable by human and, without the inverse mapping, could not be used to

reconstruct the original data. Such approach would allow to analyse the data that otherwise

could not have been disclosed. Industries that could benefit from such a technique might

include medicine, pharmaceutics, and sectors dealing with sensitive or confidential data.

There may be many other possible applications as more and more businesses are aware of how

much valuable knowledge might be mined from their data.

In this paper, such mapping and its inverse form are proposed using the adversarial autoen-

coder networks [3] with their latent layers having enforced distributions [4].

Encoded in enforced distributions, latent layers of an adversarial autoencoder can retain

information needed for classification, while the output of the network remains as close to the

input as desired.

To ensure that original data cannot be easily restored from its latent form, apart from the

enforcement of the distribution, the size of the latent layer should be significantly smaller than

the size of the input. In this way, the information in the latent layer not only has enforced dis-

tributions but it is also compressed in a lossy manner (the autoencoder’s output, while being

desirably close to the input, does not have to be equal to it).

Methodology

In this section, we formalize proposed data masking method and present in detail neural net-

work architectures that have been used.

Data masking

To address the problem of keeping the data confidential, we propose a solution that uses two

neural networks: an adversarial autoencoder and a classifier. First, we trained the adversarial

autoencoder on the public image dataset. Then we used the encoder to generate datasets of

masked images taken from other public datasets, together with corresponding labels. The

masked dataset was then used to train another network to classify the masked representations

of images. It has also been shown that for datasets of low complexity, the masked data classifi-

cation can be done using classical, i.e., non–neural approach.

In our implementation of an adversarial autoencoder, we used two vectors for the latent

layer, first, with Gaussian distribution of the data and the second one with a categorical one.

These two vectors together form the masked version of the image presented at the input of the

encoder.

The Gaussian and categorical distributions were purposefully selected for the latent vectors

to facilitate the subsequent classification process. In this way, it is possible to partition the data

in an unsupervised way using the categorical part of the latent space and organize each of these

partitions internally in a Gaussian way. While this partitioning is fully unsupervised, it still

organizes the elements according to their features.

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 2 / 14

the PyTorch library for Python (https://pytorch.org/

vision/stable/index.html).

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0254181
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html


The Gaussian distribution of the latent layer can be obtained using the standard variational

autoencoder (VAE) [5]. Still, the use of the adversarial autoencoder allows for the latent layer

to be composed of many parts, each with different distribution.

Adversarial autoencoder also produces a better representation of the manifold of the origi-

nal data in the Gaussian space. In VAE, the Gaussian space contains empty areas that make

classification harder as one does not know beforehand what kind of data might in future tasks

reside within them [3].

Forcing the encoder to output latent vectors with Gaussian and categorical distributions [6]

makes masked representation noise–like to human eyes while retaining information usable by

the neural network–based or classical classifier (see Fig 1). In our research, we prove that the

encoder can be used as universal data compression and masking tool that condenses data irre-

versibly when no proper decoder is provided while preserving information about the input fea-

tures. Reconstruction of original data is possible only by running the matching decoder, so the

decoder weights fulfill the function akin to the private key [2].

Implementation details

The system architecture corresponds to the two processing phases: masking and classification.

Firstly, the image is preprocessed with the encoder part of the adversarial autoencoder, the

only part of the model that needs to be saved for masking purposes. The output consists of vec-

tors with Gaussian and categorical distributions. The concatenation of these two vectors con-

stitutes the input for the classification task.

The experiments performed followed these steps:

1. Creating dataset A (image, category label)

2. Unsupervised training of the adversarial autoencoder on training image dataset A, to obtain

a latent image representation; label data is not being used.

3. Creating dataset B (image, category label), disjoint with set A.

4. Creating a masked dataset M(B) using the encoder trained in Step 2 (masked_image, cate-

gory label).

Fig 1. Examples of the masked representation of the input images. Top row represents original images used for the test. Middle row shows Gaussian

part of the latent space, reshaped to the square image of the size 20x20. Bottom row represents the output from the decoder.

https://doi.org/10.1371/journal.pone.0254181.g001

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 3 / 14

https://doi.org/10.1371/journal.pone.0254181.g001
https://doi.org/10.1371/journal.pone.0254181


5. Dividing disjointly the M(B) dataset into M(B)training, M(B)validation and M(B)test sets.

6. Training of a classifier based on a M(B)training set.

7. Testing the classifier basing on the M(B)test set.

The architecture of the autoencoder is presented in Fig 2. Structure of the encoder and

decoder parts are shown in S1 and S2 Tables. Discriminators, used in adversarial training,

were omitted to simplify the schema, their structure can be found in Supporting information

(S3 and S4 Tables). Input image takes masked form in the latent layer that is later an input

for the decoder part. The encoder is constructed using three convolutional layers that extract

image features and two linear layers, splitting output into the categorical and normal parts. In

the input of the decoder, those two vectors are concatenated. The decoder has analogous but

transposed convolutional layers as the encoder part.

Fig 3 depicts the architecture of the classifier. It takes as input the data produced by the

encoder and returns the class of the masked image. The network consists of three linear layers.

Two first are activated with the ReLu function, and the last one with Softmax function [4].

Fig 2. Overview of our encoder-decoder architecture.

https://doi.org/10.1371/journal.pone.0254181.g002

Fig 3. Overview of our masked classifier.

https://doi.org/10.1371/journal.pone.0254181.g003

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 4 / 14

https://doi.org/10.1371/journal.pone.0254181.g002
https://doi.org/10.1371/journal.pone.0254181.g003
https://doi.org/10.1371/journal.pone.0254181


We also compared the performance of masked image classification of that neural network

with classical machine learning algorithms (see Fig 4). We choose the Random Forest [7] and

AdaBoost [8] as they are top–performing classical multi–class classifiers [9].

Methods

All programming work was done using Python programming language [10]. Autoencoder and

neural network classifier were implemented using PyTorch [11] and trained with the help of

PyTorch-Ignite [12]. CIFAR and MNIST datasets were managed using PyTorch data loaders.

For training classical classifiers, AdaBoost [8] and Random Forest [7], we used scikit-learn

library [13]. Mathematical work, as well as matrix and vector manipulations, were done using

Numpy [14]. For creation of figures we used Matplotlib [15], Pillow [16], and Draw.io. Plots

presenting neural network training sessions were obtained with Tensorboard, part of Tensor-

flow library [17].

Experiments

In this section, we analyze the performance of our data masking method for two classification

tasks experimentally. We present a description of used datasets and metrics, introduce a

generic adversarial autoencoder baseline and show the ability to classify encoded data.

Datasets and evaluation metrics

In this study, we used three public datasets. We trained autoencoder with CIFAR-10 [18],

which contains 60000 images grouped in 10 classes (6000 each). Labels, which were not used

in adversarial training, were omitted.

Fist classification task. The classifier was tested on masked images from CIFAR-100 [18]

which contains 60000 images divided into 100 classes (600 each), and on MNIST [19] dataset

containing 60000 training images and 10000 test images, divided into ten classes.

In the case of CIFAR-100 [18] we tested the classification of masked images taken from 2, 3,

and 4 randomly selected classes. To avoid biased results, for each category, the choice of classes

was made ten times, and obtained results were averaged. Tests on CIFAR-100 [18] dataset

were thus performed 30 times in total, ten times using two randomly selected classes, ten

times using three randomly selected classes and finally, ten times using four randomly selected

classes.

Second classification task. The MNIST case was used to show that for input data of low

complexity, the classification of masked data can be successfully performed using classical, i.e.,

non-neural approach. Images from the MNIST dataset were transformed to RGB and resized

to 32x32x3—i.e., the size of images in the CIFAR dataset.

Fig 4. Classification of masked images using Ada Boost and Random Forest classifiers.

https://doi.org/10.1371/journal.pone.0254181.g004

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 5 / 14

https://doi.org/10.1371/journal.pone.0254181.g004
https://doi.org/10.1371/journal.pone.0254181


CIFAR-100 is divided into train and test sets. There are 50k training images and 10k test

images. We extracted the first 10k samples from a training set for validation purposes during

the training of the classifier (see [4]). For classical machine learning approaches, there is no

need to extract a validation set from a training set. Thus, we merged training and test sets to

apply stratified split, resulting in a training to test images ratio of 8:2.

Adversarial training

Training adversarial autoencoder consists of two phases called reconstruction and regulariza-

tion [3].

The first phase is the same as training simple autoencoder—encoder and decoder learn to

reconstruct input image into the output image. The similarity of images is evaluated with the

mean squared error (squared L2 norm) [4]. During training, the reconstruction error should

decrease until it reaches the desired value (see Fig 5).

The second phase aims to shape the latent vector so that information has the given distribu-

tion. A discriminator learns to classify input, in terms of distribution, as real or fake. It gets

random vector with values sampled from desired distribution with label real and encoder out-

put labeled as fake. Based on discriminator feedback, the encoder trains to generate values

with correct distribution, i.e., it is trained to produce output for which the discriminator

would return real. For regularization purposes, we measured the Binary Cross Entropy [4]

between the target and the output. During training, it is expected for generating loss to

decrease and for discriminators loss to increase (encoder becomes so good that discriminator

cannot correctly distinguish it from real i.e., sampled vector). The process of training those

two networks are depicted in Figs 6 and 7.

All models were trained with Adam optimizer [20] with default hyperparameters (learning

rate lr = 0.001 and coefficients betas = (0.9, 0.999)) with a mini-batch size 16. Choosing the

size of the latent space is an important problem in autoencoder training. We have used 384–

long Gaussian distributed vector and 20–long categorically distributed vector. These values

allowed to achieve a satisfactory quality of learning maintaining low consumption of the GPU

memory as well as enforced compression of the input data in the latent layer.

(Encoder, decoder)—The matching pair

During the training of the autoencoder, the encoder and decoder parts are trained together.

The training of the network starts with the weights initialized in a random way [21]. Also,

Fig 5. Reconstruction loss.

https://doi.org/10.1371/journal.pone.0254181.g005

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 6 / 14

https://doi.org/10.1371/journal.pone.0254181.g005
https://doi.org/10.1371/journal.pone.0254181


during the training, the order of images in batches are randomized [4]. The final weights of

the network are thus a product of many processes that, by design, are random in their nature.

While it is theoretically possible that two heavily random processes may produce the same

result, such a situation is very unlikely. Similarly, it is possible that randomly generated pass-

word will unlock access to password–protected data, especially if the password is short or

directory–based. Here for the described encoder part of the network, the model has over 400

thousand trainable parameters. To test that each encoder–decoder pair that has been obtained

from training is a matched pair, the following experiment has been conducted.

The autoencoder was trained four times using the same training dataset. From training, we

have obtained four instances of the autoencoder. Let the encj denote encoder transformation

from jth instance of the autoencoder. Let also the decj denote decoder transformation from jth

instance of the autoencoder.

Figs 8 and 9 show that only when encoder and decoder are from the same instance, the out-

put has any similarity to the input.

For set of test patterns P (shown in Fig 9 and S1–S3 Figs) the following measures of the

MSE [22] were obtained:

mðMSEðx; deciðencjðxÞÞÞi¼jÞ ¼ 0:001811 for x 2 P ð1Þ

Fig 6. Generating loss.

https://doi.org/10.1371/journal.pone.0254181.g006

Fig 7. Discriminators total loss (sum of categorical discriminator’s and normal discriminator’s loss values during training).

https://doi.org/10.1371/journal.pone.0254181.g007

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 7 / 14

https://doi.org/10.1371/journal.pone.0254181.g006
https://doi.org/10.1371/journal.pone.0254181.g007
https://doi.org/10.1371/journal.pone.0254181


sðMSEðx; deciðencjðxÞÞÞi¼jÞ ¼ 0:000647 for x 2 P ð2Þ

mðMSEðx; deciðencjðxÞÞÞi6¼jÞ ¼ 0:312014 for x 2 P ð3Þ

sðMSEðx; deciðencjðxÞÞÞi6¼jÞ ¼ 0:065740 for x 2 P ð4Þ

Fig 8. Combinations of (encoder, decoder) pairs from various instances. Results of deci(encj(x)) where the original

image x is shown in upper left corner. The x is properly recreated only if i == j.

https://doi.org/10.1371/journal.pone.0254181.g008

Fig 9. Combinations of (encoder, decoder) pairs from various instances. Results of deci(encj(x)) where the original

image x is shown in upper left corner. The x is properly recreated only if i == j. Use of test pattern shows that

deci(encj(x)) for i 6¼ j has no similarity to x.

https://doi.org/10.1371/journal.pone.0254181.g009

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 8 / 14

https://doi.org/10.1371/journal.pone.0254181.g008
https://doi.org/10.1371/journal.pone.0254181.g009
https://doi.org/10.1371/journal.pone.0254181


For set of 40 000 training images T (see Section Datasets and evaluation metrics) the follow-

ing measures of the MSE were obtained:

mðMSEðx; deciðencjðxÞÞÞi¼jÞ ¼ 0:003543 for x 2 T ð5Þ

sðMSEðx; deciðencjðxÞÞÞi¼jÞ ¼ 0:000764 for x 2 T ð6Þ

mðMSEðx; deciðencjðxÞÞÞi6¼jÞ ¼ 0:111649 for x 2 T ð7Þ

sðMSEðx; deciðencjðxÞÞÞi6¼jÞ ¼ 0:014910 for x 2 T ð8Þ

For set of 10 000 validating images V (see Section Datasets and evaluation metrics) the fol-

lowing measures of the MSE were obtained:

mðMSEðx; deciðencjðxÞÞÞi¼jÞ ¼ 0:003550 for x 2 V ð9Þ

sðMSEðx; deciðencjðxÞÞÞi¼jÞ ¼ 0:000709 for x 2 V ð10Þ

mðMSEðx; deciðencjðxÞÞÞi6¼jÞ ¼ 0:112298 for x 2 V ð11Þ

sðMSEðx; deciðencjðxÞÞÞi6¼jÞ ¼ 0:012321 for x 2 V ð12Þ

From Eqs 1–12 it is evident that that when encoder and decoder form a matched pair, the

mean MSE error is much lower than in the case of unmatched pair. In fact, it is lower by two

orders of magnitude. This together with results shown in Figs 8 and 9 and in S1–S6 Figs clearly

shows that to decode a data in a masked form, one requires not just any decoder trained with

given architecture but the decoder that was trained together with the encoder used for masking

process.

Classification of masked data from the CIFAR-100 dataset

To investigate the information capacity of the masked image data, we performed classification

tasks with a neural network classifier consisting of linear layers, as well as classical machine

learning algorithms, namely AdaBoost and Random Forest.

In this experiment, the encoder, part of the adversarial autoencoder, was used on the

CIFAR-100 dataset images to produce masked representation. Input data for all algorithms

consisted of the Gaussian (1x384) and Categorical (1x20) output of the encoder, joined to cre-

ate a vector of a size 1x404. Classification tasks were performed on all subsets created by sub-

classing the CIFAR-100 dataset, as described in the previous sections (2–, 3– and 4–class

subsets were used).

Classification with classical machine learning algorithms. Data were fed into both clas-

sifiers, AdaBoost and RandomForest, with original labels associated with images. As for the

algorithm, default hyperparameters were used, and models were trained using 100 estimators.

After the training step, predictions were made on the test set. Results comprising accuracy,

precision and recall are shown in S5–S7 Tables.

Classification with neural network. The neural network classifier task consists of three

linear layers (S8 Table). The activation layers we have chosen are ReLU and Softmax (last

layer). The size of the dense layers was chosen arbitrarily based on our experiments with dif-

ferent network configurations. At its input network sees the masked representation of the

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 9 / 14

https://doi.org/10.1371/journal.pone.0254181


image, together with the original label in mini-batches of size 4. The model returns, as a pre-

diction, a class an image supposedly belongs to. Model was trained with Adam optimizer

with default hyperparameters (learning rate lr = 0.001 and betas = (0.9, 0.999)) with cross

entropy as the loss function. In training, we used a test set disjoint with a validation set.

Results calculated for a test set (accuracy, precision and recall) are gathered in S5–S7 Tables.

Figs 10 and 11 show accuracy and loss during classifier training in case of two randomly

Fig 10. Classification accuracy during training—Case with two classes.

https://doi.org/10.1371/journal.pone.0254181.g010

Fig 11. Classification loss during training (2 classes).

https://doi.org/10.1371/journal.pone.0254181.g011

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 10 / 14

https://doi.org/10.1371/journal.pone.0254181.g010
https://doi.org/10.1371/journal.pone.0254181.g011
https://doi.org/10.1371/journal.pone.0254181


chosen classes. In both plots orange points represents values calculated on the training set,

and blue on the validation set.

Results

Results shown in Tables 1, 2 and S5–S7 Tables indicate that neural network outperforms classi-

cal machine learning algorithms in the task of classification of the masked data.

Although results for 2-class cases are comparable (see Tables 1 and S5–S7 Tables), the accu-

racy of Random Forest and AdaBoost classifiers drops much faster, with increasing number of

classes, than it is the case with a neural network.

While for 2 classes the accuracies are (0.852, 0.822, and 0.804) for neural network, Random

Forest and AdaBoost, respectively, the drop in accuracy when considering four–class experi-

ment is (0.083, 0.387, and 0.212). In the case of classical algorithms (Random Forest and Ada-

Boost), this drop is by order of magnitude larger than in the case of the neural network–based

classifier.

Our tests have shown no significant improvement in the accuracy of the predictions pro-

vided by classical algorithms when the number of estimators was increased.

Neural network–based classifier, even with four classes, achieves accuracy close to 80% on

masked data.

Discussion and conclusions

In this study, we propose a novel data masking method using an adversarial autoencoder. Our

experiments show it is possible to create a masked form of an image, visually not similar to the

original, with retained hidden information sufficient for classification tasks. It has been shown

that only the matching decoder is capable of turning masked representation into a form close

to the original. This way, we have shown that it is possible to classify the image data without

Table 1. Classification results for 2, 3 and 4-class subsets drawn from CIFAR100 dataset.

Methods No classes Accuracy Precision Recall

μ σ μ σ μ σ
Neural Network 2 0.852 0.068 0.855 0.067 0.851 0.068

3 0.804 0.090 0.805 0.091 0.804 0.090

4 0.769 0.098 0.771 0.098 0.769 0.098

Random Forest 2 0.822 0.077 0.822 0.076 0.823 0.077

3 0.625 0.121 0.748 0.067 0.626 0.119

4 0.435 0.113 0.746 0.037 0.428 0.102

Ada Boost 2 0.804 0.088 0.805 0.089 0.804 0.088

3 0.660 0.081 0.670 0.084 0.659 0.082

4 0.592 0.070 0.600 0.071 0.592 0.070

Results given in this table are averages from ten runs with randomly selected classes. Details for each run are provided in S5–S7 Tables.

https://doi.org/10.1371/journal.pone.0254181.t001

Table 2. Classification results for MNIST dataset.

Method Accuracy Precision Recall

NN Classifier 0.983 0.983 0.983

Random Forest 0.672 0.920 0.666

Ada Boost 0.689 0.685 0.684

https://doi.org/10.1371/journal.pone.0254181.t002

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 11 / 14

https://doi.org/10.1371/journal.pone.0254181.t001
https://doi.org/10.1371/journal.pone.0254181.t002
https://doi.org/10.1371/journal.pone.0254181


having direct access to it. The owner of the data using the encoding part of the described auto-

encoder can produce its masked form to provide it for classification. As long as the instance of

the autoencoder used for masking remains undisclosed, the classification can be performed

without the risk of disclosing the original data. Construction of the autoencoder guarantees

that while the information in the latent layer is unreadable to the human, it is still present and

can be used for classification and other tasks of choice.

Future work: In future work, an attempt with larger images should be made. While the clas-

sification of images from the CIFAR set is proof that such technology can be used, this method

should be extended to larger images for many practical approaches. There are many possible

ways to approach the extension task, and they should be considered.

Also, the use of autoencoders with the latent layer size in a different ratio to the size of the

input, than the one used in this paper, might be considered. A bigger latent layer might pro-

vide a better reconstruction of the input, which might provide more informational content for

classification. On the other hand, a smaller latent layer would enforce more lossy compression,

making the content of the latent layer even more protected from attempts of reverse recon-

struction, as well as it would limit the memory demand during the training process.

Supporting information

S1 File. The test patterns. ZIP file containing archived black and white patterns used for auto-

encoder testing.

(ZIP)

S1 Fig. Combinations of (encoder, decoder) pairs from various instances. Results of

deci(encj(x)) where the original image x is shown in upper left corner. The x is properly recre-

ated only if i == j. Use of test pattern shows that deci(encj(x)) for i 6¼ j has no similarity to x.

(EPS)

S2 Fig. Combinations of (encoder, decoder) pairs from various instances. Results of

deci(encj(x)) where the original image x is shown in upper left corner. The x is properly recre-

ated only if i == j. Use of test pattern shows that deci(encj(x)) for i 6¼ j has no similarity to x.

(EPS)

S3 Fig. Combinations of (encoder, decoder) pairs from various instances. Results of

deci(encj(x)) where the original image x is shown in upper left corner. The x is properly recre-

ated only if i == j. Use of test pattern shows that deci(encj(x)) for i 6¼ j has no similarity to x.

(EPS)

S4 Fig. Combinations of (encoder, decoder) pairs from various instances. Results of

deci(encj(x)) where the original image x is shown in upper left corner. The x is properly recre-

ated only if i == j.
(EPS)

S5 Fig. Combinations of (encoder, decoder) pairs from various instances. Results of

deci(encj(x)) where the original image x is shown in upper left corner. The x is properly recre-

ated only if i == j.
(EPS)

S6 Fig. Combinations of (encoder, decoder) pairs from various instances. Results of

deci(encj(x)) where the original image x is shown in upper left corner. The x is properly recre-

ated only if i == j.
(EPS)

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s007
https://doi.org/10.1371/journal.pone.0254181


S1 Table. Encoder.

(PDF)

S2 Table. Decoder.

(PDF)

S3 Table. Normal discriminator.

(PDF)

S4 Table. Categorical discriminator.

(PDF)

S5 Table. Classification results for 2-class subsets drawn from CIFAR100 dataset.

(PDF)

S6 Table. Classification results for 3-class subsets drawn from CIFAR100 dataset.

(PDF)

S7 Table. Classification results for 4-class subsets drawn from CIFAR100 dataset.

(PDF)

S8 Table. Masked images classifier.

(PDF)

Author Contributions

Conceptualization: Konrad A. Ciecierski.

Data curation: Kamila Lis, Mateusz Koryciński, Konrad A. Ciecierski.

Investigation: Kamila Lis, Mateusz Koryciński, Konrad A. Ciecierski.

Methodology: Kamila Lis, Mateusz Koryciński, Konrad A. Ciecierski.

Software: Kamila Lis, Mateusz Koryciński, Konrad A. Ciecierski.

Supervision: Konrad A. Ciecierski.

Validation: Konrad A. Ciecierski.

Visualization: Kamila Lis, Mateusz Koryciński.

Writing – original draft: Kamila Lis, Mateusz Koryciński, Konrad A. Ciecierski.

Writing – review & editing: Konrad A. Ciecierski.

References

1. Mitchell TM and others Introduction to machine learning. Machine Learning. 1997; 7:2–5. McGraw-hill

New York; 1997.

2. Katz J, Lindell Y Introduction to modern cryptography. CRC press; 2020.

3. Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B Adversarial autoencoders. arXiv preprint

arXiv:1511.05644 [Preprint]; 2015. Available from: https://arxiv.org/abs/1511.05644.

4. Goodfellow I, Bengio Y, Courville A, Bengio Y Deep learning. vol. 1. MIT press Cambridge; 2016.

5. Kingma DP, Welling M Auto–encoding variational bayes. arXiv preprint arXiv:1312.6114. 2013;. Avail-

able from: https://arxiv.org/abs/1312.6114.

6. Forbes C, Evans M, Hastings N, Peacock B Statistical distributions. John Wiley & Sons; 2011.

7. Liaw A, Wiener M Classification and Regression by randomForest. R News 2(3):18–22; 2002.

8. Schapire RE. Explaining adaboost. In: Empirical inference. Springer; 2013. p. 37–52. https://doi.org/10.

1007/978-3-642-41136-6_5

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 13 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254181.s015
https://arxiv.org/abs/1511.05644
https://arxiv.org/abs/1312.6114
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1371/journal.pone.0254181


9. Lim TS, Loh WY, Shih YS. A comparison of prediction accuracy, complexity, and training time of thirty-

three old and new classification algorithms. Machine learning. 2000; 40(3):203–228. https://doi.org/10.

1023/A:1007608224229

10. Van Rossum G, Drake Jr FL Python tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The

Netherlands; 1995.

11. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An Imperative Style,

High-Performance Deep Learning Library. Advances in Neural Information Processing Systems 32.

Curran Associates, Inc.; 2019. p. 8024–8035. Available from: http://papers.neurips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

12. Fomin V, Anmol J, Desroziers S, Kriss J, Tejani A. High-level library to help with training neural networks

in PyTorch; 2020. Available from: https://github.com/pytorch/ignite.

13. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.

14. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array program-

ming with NumPy. Nature. 2020; 585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

PMID: 32939066

15. Hunter JD. Matplotlib: A 2D graphics environment. Computing in science & engineering. 2007; 9(3):90–

95. https://doi.org/10.1109/MCSE.2007.55

16. Pillow CA (PIL Fork) Documentation; 2015. Available from: https://buildmedia.readthedocs.org/media/

pdf/pillow/latest/pillow.pdf.

17. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Available from: https://www.tensorflow.org/.

18. Krizhevsky A Learning Multiple Layers of Features from Tiny Images. 2009.

19. LeCun Y, Cortes C. MNIST handwritten digit database. 2010.

20. Kingma DP, Ba J Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014;.

Available from: https://arxiv.org/abs/1412.6980.

21. Yam JY, Chow TW A weight initialization method for improving training speed in feedforward neural net-

work. Neurocomputing. 2000; 30(1-4):219–232. https://doi.org/10.1016/S0925-2312(99)00127-7

22. Wang Z, Bovik AC Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE

signal processing magazine. 2009; 26(1):98–117. https://doi.org/10.1109/MSP.2008.930649

PLOS ONE Classification of masked image data

PLOS ONE | https://doi.org/10.1371/journal.pone.0254181 July 6, 2021 14 / 14

https://doi.org/10.1023/A:1007608224229
https://doi.org/10.1023/A:1007608224229
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/pytorch/ignite
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1109/MCSE.2007.55
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://www.tensorflow.org/
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/S0925-2312(99)00127-7
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1371/journal.pone.0254181

